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Abstract—The control of articulated soft robots, i.e. robots with
flexible joints and rigid links, presents a challenge due to their in-
trinsic elastic elements and nonlinear force-deflection dependency.
This letter first proposes a discrete-time delayed unknown input-
state observer based on a nominal robot model that reconstructs
the total torque disturbance vector, resulting from the imperfect
knowledge of the elastic torque characteristic, external torques, and
other model uncertainties. Then, it introduces a robust controller,
that actively compensates for the estimated uncertainty and allows
bounded stability for the tracking of independent link position and
joint stiffness reference signals. The convergence of the disturbance
estimator and the overall system’s stability in closed loop is proven
analytically, while the effectiveness of the proposed control design
is first evaluated in simulations with respect to large uncertainty
conditions, and then demonstrated through experiments on a real
multi-degree-of-freedom articulated soft robot.

Index Terms—Robust/adaptive control, flexible robotics,
compliance and impedance control.

I. INTRODUCTION

ENDOWED with intrinsic flexibility, Articulated Soft
Robots (ASR) can reach competitive skills, such as adap-

tation to unstructured environment [1], effective energy stor-
age and release [2], and stable interaction with static envi-
ronment [3], that are typical of biomechanical systems. To
fully match the skills of vertebrates, a class of articulated soft
robots with Variable Stiffness Actuation (VSA) technology has
been developed, capable of modifying robot joint stiffness with
time [4]. The potential capacity to regulate simultaneously, and
in a decoupled manner, joint position and stiffness [5]–[7],
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empowers them with even more dynamic manipulation capa-
bilities, allowing them to perform tasks that involve for example
throwing and catching [8] of objects, that were not attainable by
rigid robots just a few decades ago.

Being biologically inspired and of a less complex mechanical
design compared to other VSAs, agonistic-antagonistic VSAs
are often applied technology in ASR systems [9]. However,
the gained advantage of a simpler mechanical design is traded-
off with the need for a more elaborated controller that can
allow decoupled position and stiffness regulation. Moreover,
the agonistic-antagonistic actuators introduce nonlinearities into
the model since a nonlinear force-deformation dependency is
needed to achieve a time-varying stiffness [10], while the ex-
istence of elastic tendons introduces hysteresis and additional
nonlinearities since tendons change their characteristic over time
due to wear-off and working temperature, or even break [11].

To tackle the challenge of controlling an ASR, the first line
of research consists of model-based approaches, which leverage
on precise knowledge of either the full robot dynamics or the
actuator’s model. Relevant examples of the first setting are the
ones obtained by feedback linearization [5], gain-scheduling
control [12], and backstepping control [13], while adaptive
control [7] and control based on damping injection [14] have
been used in the latter one. A second, also very promising, line
of research is model-free and involves techniques that aim at
iteratively learning the position or torque control of an ASR, by
using the minimum knowledge about the system while preserv-
ing its compliance through a feedforward control component [6],
[15], yet without guaranteeing stability. Moreover, compared to
the state feedback control in [16] this letter avoids using torque
sensors.

The present work capitalizes on the advantages of model-
based formal approaches to provide stability guarantees, and, in
that regard, it proposes a novel disturbance-based robust control
solution for articulated soft robots with antagonistic VSA, that
ensures the performance even under lack of system knowledge
or presence of the external disturbance. More precisely, our ap-
proach assumes arbitrary values of the parameters that construct
the robot’s inertia matrix, chosen under the constraint that the
inertia matrix is non-singular. The proposed solution builds upon
the theory of delayed Unknown Input Observers (UIO), which
allows estimating and compensating the model’s uncertainties
after only a few samples [17], compared to the dozen itera-
tions needed for learning-based approaches. Compared to other
existing solutions such as Extended State Observers (ESO),
UIOs do not lean on assumptions on the disturbance dynamics
and its boundedness, require no parameter tuning, have exact
convergence guarantees, and outperform them [18] despite their
simplicity. Moreover, the controllers’ robustness to the robot
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Fig. 1. Depiction of an articulated soft robot with n rigid links and n flexible
joints driven by electromechanical VSA devices (left) and picture of the 3-
degree-of-freedom hardware setup used to validate the proposed solution (right).

and actuator model uncertainties facilitates its application and
avoids the necessity for extensive a-priori model identification.

The contributions of the letter are: 1) the formalization of a
model for VSA-driven articulated soft robots with factorized
actuator dynamics, allowing a convenient decomposition into
arbitrarily simple yet invertible nominal and uncertain dynam-
ics; 2) a formulation of a delayed UIO for VSA-driven robots
that simultaneously estimates the input disturbance and system
states, and, consequently, avoids the necessity to collect velocity
and acceleration measures at the only cost of a few sample delay;
3) the design of a robust composite disturbance-observer-based
controller, which uses the information on state and input es-
timates to provide perfect asymptotic tracking of position and
stiffness desired trajectories; 4) simulation and experimental val-
idations on a multi-degree-of-freedom VSA-driven articulated
soft robot that prove the effectiveness of the proposed control
design in successfully tracking the desired position and stiffness
references despite the existing nonlinearities and uncertainties.

II. BACKGROUND AND PROBLEM STATEMENT

The structure of an articulated soft robot with n links and n
flexible joints, driven by electromechanical VSA devices, is
illustrated in Fig. 1. The actuation of the i-th robot joint is
obtained as the result of mechanical deflections of elastic el-
ements within each VSA, which are generated by internal pairs
of electric motors. Such pairs are arranged in so-called agonistic-
antagonistic configuration so as to enable simultaneous setting
of the link position and joint stiffness. Indicating with qi the i-th
link position and with θi,a and θi,b the internal motor positions
of the i-th VSA device, the i-th pair of deflections are

φi,a = qi − θi,a , φi,b = qi − θi,b , (1)

and produce an agonistic elastic torque τei,a(φi,a) and an antag-
onistic elastic torque τei,b(φi,b), that are simultaneously applied
at the i-th link. The total elastic torque applied at the i-th link is
then

τei = τei,a(φi,a) + τei,b(φi,b) . (2)

Defining the robot configuration vector q = (q1, . . . , qn)
T ,

the motor position vectors and elastic torque vectors, θj =

(θ1,j , . . . , θn,j)
T and τej = (τe1,j , . . . , τ

e
n,j)

T , for j = a, b, re-
spectively, and the total elastic torque vector τe = τea + τeb , the
robot’s dynamic model, including the link position dynamics and
those of the motors within the VSA devices, is given by [10]:

M(q) q̈ + h(q, q̇) + τe(φa, φb) = τext ,

Ja θ̈a +Δa θ̇a − τea(φa) = τa ,

Jb θ̈b +Δb θ̇b − τeb (φb) = τb .
(3)

where M ∈ Rn×n is the robot’s inertia matrix, h(q, q̇) ∈ Rn is
a vector field collecting the centrifugal, Coriolis, and gravity
terms, τext ∈ Rn is an externally applied torque vector, Ja and
Jb are the motors’ inertia, Δa and Δb are damping coefficients,
and τa and τb are the electrically-induced motor torques. Ac-
cordingly, the i-th joint stiffness is given by definition

σi =
∂

∂φi,a
τei,a(φi,a) +

∂
∂φi,b

τei,b(φi,b) , (4)

and the joint stiffness matrix is σ = diag(σ1, . . . , σn). Within
this setting, the present letter addresses the following problem:

Problem 1: Given an ASR with dynamics as in (3) and joint
stiffness as in (4), design a robust observer-based controller
ensuring simultaneous and asymptotic tracking of desired link
position and joint stiffness signals, qd(t) and σd(t).

Before moving on to the letter contributions, the following
definitions and properties are recalled. First, a square matrix A
is Schur if all its eigenvalues are within the unit circle, i.e.
|λi(A)| < 1 for all i. The notation 0�×h represents a null matrix
belonging to R�×h, while 0� is used as a short-hand when h = �.
Also, I� indicates the identity matrix of order �. Moreover, given
a linear discrete-time model of the form

Xk+1 = AXk +B Uk , Yk = C Xk +DUk , (5)

where k is a discrete time step, Xk ∈ Rn is a state vector, Uk ∈
Rm an unknown input vector, and Yk ∈ Rr an output vector, the
state matrix is A ∈ Rn×n, input matrix is B ∈ Rn×m, output
matrix is C ∈ Rr×n and feed-through matrix is D ∈ Rr×m the
L-step invertibility and observability matrices are obtained by
the recursive definitions

HL =

(
D 0r×m

OL−1B HL−1

)
and OL =

(
C

OL−1 A

)
,

forL ≥ 1 and H0 = D andO0 = C. Given the sequences of the
matrices, HL and OL, for L = 0, 1, . . . , n, a dynamic model as
in (5) is said to be strongly observable if, and only if, for some
L, it holds

rank([OL,HL])− rank(HL) = n , (6)

and it is said to be invertible if, and only if, for some L, it holds

rank(HL)− rank(HL−1) = m. (7)

III. COMPOUND CONFIGURATION DYNAMICS OF

ASR - FACTORIZATION AND DECOMPOSITION

The purpose of this section is twofold: first, to describe a
convenient and general way to factorize the actuation-related
terms, in the position and stiffness dynamics of an articulated
soft robot, with respect to a generic basis of functions; then, to
introduce a general decomposition of the obtained model as an
arbitrarily simple yet invertible nominal dynamics, affected by
uncertain input signals.

A. Actuation Model Factorization

Virtually all VSA devices are provided with an integrated and
fast control loop allowing a practically instantaneous regulation
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of the actuation motors. Based on this, the agonistic and antago-
nistic motor positions, indicated in our model by the vectors θa
and θb, can be viewed as input variables for the robot dynamics.
As a result, the robot model in (3) can be restricted to the link
equation only:

M(q) q̈ + h(q, q̇) + τe(φa, φb) = τext , (8)

where φj = (φ1,j , . . . , φn,j)
T , for j = a, b, with each φi,j =

qi − θi,j is the j-th deflection at the i-th joint.
Assuming that all VSA devices in the robot are homoge-

neous, i.e. they are made of similar copies of the same agonis-
tic/antagonistic actuation mechanism, the entries of the elastic
torque vectors τea and τeb can be expressed as combinations of
suitable basis functions, {y1, . . . , yp}, of the (i, j)-th pair of
deflection variables φi,j (cf. e.g. the basis choice in [19]), i.e.

τei,a =

p∑
k=1

αi,k yk(φi,a) , τ
e
i,b =

p∑
k=1

βi,k yk(φi,b),

for i = 1, . . . , n, with αi,k and βi,k being the coefficients of the
combinations. Note that since the functions yk belong to a basis,
they can be assumed to be linearly independent. From (2) and
considering the separability of the elastic torque factors, the total
elastic torque vector τe can be factorized as in the following:

τe =

⎛
⎜⎝

τe1,a(φ1,a) + τe1,b(φ1,b)
...

τen,a(φn,a) + τen,b(φn,b)

⎞
⎟⎠ = ΠΓ(φ1, φ2) ,

with

Π = diag(Π1, . . . ,Πn) ∈ Rn×2np ,

Γ = (γ1(φ1,a, φ1,b)
T , . . . , γn(φn,a, φn,b)

T )T ∈ R2np,

and each

Πi = (αi,1, . . . , αi,p, βi,1, . . . , βi,p) ∈ R1×2p ,

γi = (y1(φi,a), . . . , yp(φi,a), y1(φi,b), . . . , yp(φi,b))
T ∈ R2p.

Moreover, to attain a similar decomposition for the dynamic
behavior of the joint stiffness matrix σ and, in parallel, avoid
using link and motor speed data, it is algebraically convenient to
adopt the time-integral Si of the total i-th joint stiffness σi, i.e.
Si =

∫ t

0 σi(τ)dτ , as a state variable. Then, its time derivative is
Ṡi = σi, which, by virtue of (4), is the sum of two addends
depending on the i-th agonistic and antagonistic deflections,
respectively. Hence, such a derivative can be expressed via the
same basis functions used above, i.e.

Ṡi = σi =

p∑
k=1

(μi,k yk(φi,a) + νi,k yk(φi,b)),

where μi,k and νi,k are suitable coefficients. Accordingly,
one can write Ṡ = ΣΓ(φ1, φ2), with Σ = diag(Σ1, . . . ,Σn) ∈
Rn×2np and each Σi = (μi,1, . . . , μi,p, νi,1, . . . , νi,p) ∈ R1×2p .

Finally, putting all together, the dynamics of the compound
configuration vector (qT , ST )T can be written in the following
form with actuation factorization:

M(q) q̈ + h(q, q̇) = τext −ΠΓ(φa, φb) ,
Ṡ = ΣΓ(φa, φb) ,

(9)

where the basis functions used to decompose the total elastic
torque and its partial derivative operate as input functions.

B. Nominal and Uncertain Model Decomposition

The dynamics in (9) includes functions that may be uncer-
tain or even unknown, i.e. the inertia matrix M(q), the func-
tions appearing in h(q, q̇), the coefficients of Π and Σ in the
actuation-related terms, and the external torque τext are only
partially known. Under this hypothesis, we seek for a convenient
decomposition of (9) separating a minimal yet exactly known
dynamics from the remainder uncertain one.

To this purpose, it can be assumed, without loss of generality,
that M(q)−1 can be expanded as the sum of an invertible known
matrix M̄(q)−1 and a remainder uncertain one ΔM(q)−1. In
addition, as the basis functions used to factorize the actuation-
related terms can be freely chosen, they are available and,
thus, the only uncertainty affects the values of the involved
coefficientsΠ andΣ. Finally, no assumptions on the separability
of known and unknown terms in h(q, q̇) are made. In summary,
it holds:

M(q)−1 = M̄(q)−1 +ΔM(q)−1 ,

Π = Π̄ +ΔΠ , Σ = Σ̄ +ΔΣ, (10)

with Π̄ and Σ̄ being nominal known values and ΔΠ and ΔΣ the
uncertain ones. Having stated the previous assumptions, one can
left-multiply the first equation of (9) byM(q)−1 and, using (10),
obtain

q̈ = M(q)−1 (τext − h (q, q̇))−M(q)−1 ΠΓ(φa, φb)

=
(
M̄(q)−1 +ΔM(q)−1

)
(τext − h(q, q̇)) +

− (M̄(q)−1 +ΔM(q)−1
)
ΔΠ Γ(φa, φb) +

−ΔM−1(q) Π̄ Γ(φa, φb)− M̄−1(q) Π̄ Γ(φa, φb) ,

Ṡ = Σ̄ Γ(φa, φb) + ΔΣ Γ(φa, φb).

As a next step, one can separate the terms that are fully known
from the remaining ones that can be lumped together into a vector
signal w = (wT

q , w
T
S )

T , which will be considered as unknown
disturbance. Specifically, defining

wq = M(q)−1 (τext − h(q, q̇)) +

− (M(q)−1ΔΠ+ΔM(q)−1 Π̄
)
Γ(φa, φb) ,

wS = ΔΣ Γ(φa, φb),

where matrix M(q)−1 has been recombined where possible for
compactness, leads to the sought nominal model with explicit
unknown input disturbance:

q̈ = −M̄(q)−1 Π̄ Γ(φa, φb) + wq ,
Ṡ = Σ̄ Γ(φa, φb) + wS .

(11)

Remark 1: As shown later, the inertia inverse M̄(q)−1 can be
chosen quite arbitrarily, provided that it is invertible, thereby
avoiding information loss on the right hand-side of (8). Ac-
cordingly, to make the synthesis of a linear input-state observer
feasible, as done in the next section, M̄(q)−1 is further assumed
to be constant, i.e. M̄(q)−1 = M̄−1. The remainder part of the
inertia inverse is then ΔM(q)−1 = M(q)−1 − M̄−1.

IV. INPUT-STATE OBSERVER DESIGN FOR ASR

The second step of our strategy is to dynamically reconstruct
the unknown signalw (or better its discrete-time version), acting
in (11), so as to enable its subsequent compensation by a suitable
robust controller later derived. Leveraging on the model refor-
mulation described in the previous section, w can be estimated
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by a linear unknown input-state observer using a nominal state
form of such model.

To this aim, given a sampling period T and a discrete
time k, let the compound configuration vector be the sys-
tem output, i.e. Y = (qT , ST )T ∈ R2n, the output of the ro-
bust controller be the system (manipulable) input, i.e. U =
Γ(φa, φb) ∈ R2np, and w = (wT

q , w
T
S )

T ∈ R2n be an unknown
disturbance (note that no link speed data is used); defining
the state vector X = (qT , q̇T , ST )T , (11) is written as Ẋ =

AcX +BcU +Wcw, with Ac =

(
0n In 0n

02n×n 02n×n 02n×n

)
, Bc =

(0np×n,−(M̄−1 Π̄)T , Σ̄T )T , Wc = (0Tn×2n, I2n)
T . Assuming

U and w be constant between two consecutive discrete times
and using the approach in [20] and the fact that Ac is nilpotent
of order 2, i.e. Ak

c = 0 for k ≥ 2, it is straightforward to obtain
the linear discrete-time state form

Xk+1 = AXk +B Uk +W wk , Yk = C Xk , (12)

where Xk = X(kT ), Yk = Y (kT ), Uk = U(kT ), and wk =
w(kT ) and where

A=eAcT=I3n+TAc=

⎛
⎝In T In 0n
0n In 0n
0n 0n In

⎞
⎠, C=

(
In 0n 0n
0n 0n In

)

B = J Bc =

⎛
⎝ 0n×np

−TM̄−1 Π̄

T Σ̄

⎞
⎠ ,W = J Wc =

(
0n×2n

T I2n

)
,

(13)

being J = A−1
c (eAcT − I3n) = T .

Now, indicating with X̂k = (q̂(kT )T , ˙̂q(kT )T , Ŝ(kT )T )T

an estimate of Xk, with ŵk an estimate of wk, with Yk =
(Y T

k−2, Y
T
k−1, Y

T
k )T the output history vector of the latest 3

values of Yk, and with {λ1, . . . , λ3n} a set of constants that can
be freely chosen within the unit circle of the complex plane,
the linearity of (12) allows designing the following delayed
estimator:

Theorem 1 (DUIO Design for ASR): Given the reformu-
lated model of an articulated soft robot described in (12), with
matrices A, B, and C as in (13), a 2-sample delayed state
estimate X̂k−2 can be computed via the iterative rule

X̂k−2+1 = E X̂k−2 +B Uk−2 + F (Yk + Nk) , (14)

in which

E = diag(λ1, . . . , λ3n) ,

F =

⎛
⎝ F1 − In

1
T In 0n 0n 0n 0n

−F1 − 1
T In In

1
T F3 0n

1
T In 0n

1
T In F2 + In 0n In 0n 0n

⎞
⎠
(15)

with F1 = diag(λ1, . . . , λn), F2 = diag(λn+1, . . . , λ2n), F3 =
diag(λ2n+1, . . . , λ3n), and in which

Nk = (02n, (N1Uk−2)
T , (N2Uk−2 +N1Uk−1)

T )T , (16)

with N1 =
(
0n×np

−T Σ̄

)
and N2 =

(
T 2M̄−1 Π̄

−T Σ̄

)
. Moreover, given

G = (02n×n,
1
T I2n, 02n), a 2-sample delayed input esti-

mate ŵk−2 can be computed via the formula

ŵk−2 = G

(
X̂k−1 −AX̂k−2 −B Uk−2

Yk − CX̂k−2

)
. (17)

Proof: The DUIO derivation can be achieved within the
framework of delayed input-state observers (cf. e.g. [17]), which
can be done through the following three steps.

1) Existence: The existence of the observer with a suitable
delay L is ensured if, and only if, the compound state dynamics
in (12) is strongly observable with respect to all initial conditions
and invertible with respect to the unknown input wk when the
system output is Yk [17]. Referring to the conditions in (6)
and (7), the system dynamics has a null direct matrix, D = 02n,
multiplying wk, and hence the first three invertibility matrices
in the sequence are

H0 = 02n,H1 =

⎛
⎝ 02n 02n

0n 0n
0n T In

02n

⎞
⎠ ,

H2=

⎛
⎜⎝

02n 02n 02n

CW 02n 02n

CAW CW 02n

⎞
⎟⎠=

⎛
⎜⎜⎜⎜⎝

02n 02n 02n
0n 0n

0n T In
02n 02n

T 2In 0n

0n T In

0n 0n

0n T In
02n

⎞
⎟⎟⎟⎟⎠ .

Given that the dimension of the unknown input wk is m = 2n
and that rank(H0) = 0, rank(H1) = n and rank(H2) = 3n,
the conditions in (6) and (7) are first satisfied with L = 2, which
is the (minimum) delay of the observer.

2a) State Estimation – Convergence Conditions: Knowing
that the required delay is L = 2, one can define the output
history vector Yk = (Y T

k−2, Y
T
k−1, Y

T
k )T — comprising the latest

L+ 1 = 3 output samples and being the one in the theorem
statement — and assume a state estimate update rule as in (14),
where E and F are matrices to be suitably chosen and where
Nk is still a free vector. As the observer is meant to provide, at
any step k, an estimate of the past compound state Xk−2, the
current state estimation error can be defined as ek = X̂k−2 −
Xk−2. Shifting backward in time of 2 steps the robot dynam-
ics in (12) yields Xk−2+1 = AXk−2 +B Uk−2 +W wk−2 ,
which allows, along with the assumed observer’s update rule,
deriving the following state estimation error dynamics:

ek+1 = X̂k−2+1 −Xk−2+1 =

= E X̂k−2 −AXk−2 + F Y ′
k −W wk−2 =

= E ek + (E −A)Xk−2 + F Y ′
k −W wk−2 ,

(18)

where the addend EXk−2 has been added and subtracted in the
last line of (18), and where Y ′

k = Yk + Nk.
Now, the observer’s convergence must be guaranteed for all

delayed states Xk−2 and all behaviors of the delayed unknown
inputwk−2, and hence (18) should be made independent of them.
A possible dynamics that has the desired convergence property
and that is algebraically compliant with (18) is ek+1 = E ek
with E a Schur matrix. By comparing the two expressions one
gets the condition

(E −A)Xk−2 + F Y ′
k −W wk−2 = 0 . (19)

To remove the explicit dependency of this expression on the out-
put history vector Yk, its entries can be expanded in terms of the
delayed state Xk−2 and the latest unknown input samples wk−2,
wk−1, and wk. This leads to the three formulas:

Yk−2 = C Xk−2 ,

Yk−1 = CAXk−2 + CB Uk−2 + CW wk−2 ,

Yk = CA2 Xk−2 + CAB Uk−2 + CB Uk−1

+ CAW wk−2 + CW wk−1 ,
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from which, after conveniently choosing matrix Nk as

Nk = −
⎛
⎝ 02n 02n 02n

CB 02n 02n
CAB CB 02n

⎞
⎠
⎛
⎝Uk−2

Uk−1

Uk

⎞
⎠ ,

whose direct computation leads to its expression in (16), with
N1 = −CB and N2 = −CAB, one can write⎛
⎝Y ′

k−2

Y ′
k−1

Y ′
k

⎞
⎠=

⎛
⎝ C

CA

CA2

⎞
⎠Xk−2+

⎛
⎝ 02n 02n 02n

CW 02n 02n
CAW CW 02n

⎞
⎠
⎛
⎝wk−2

wk−1

wk

⎞
⎠

or, in matrix form, Y ′
k = O2 Xk−2 + H2 Wk, where O2 is

the 2-step observability matrix and Wk = (wT
k−2, w

T
k−1, w

T
k )

T .
Consequently, (19) becomes
(E −A+ FO2)Xk−2 + (F H2 − (W, 02n, 02n))Wk = 0 .

Now, in order to satisfy this expression for every Xk−2 and Wk,
it must be that

E = A− FO2 and F H2 = (W, 02n, 02n) . (20)
2b) State Estimation – Derivation of the Matrices: The second

condition in (20) requires that F is in the left-nullspace of
the last m columns of H2, that are P = (04n,HT

1 )
T . Given

a matrix N̄ whose rows are a basis of the left-nullspace of H1,
the rows of matrix diag(I2n, N̄) are a basis of the left-nullspace
of P . Seeing the structure of H1, it suffices to choose N̄ =
(I3n, 03n×n). Moreover, given an invertible matrix W ∗, we can
define N = W ∗diag(I2n, N̄), whose rows also form a basis
of the left nullspace of P . Therefore, to find W , first note

that N
(

02n 02n×4n

O1W H1

)
= W ∗

(
02n 02n

N̄ O1 W 02n

)
= W ∗ V , where

O1 = (CT , (CA)T )T . As the required delay is L = 2, the
first 2n columns of H2 are linearly independent and hence
rank(V ) = 2n. Matrix W ∗ can be chosen so that its last 2n
rows are a left-inverse of V , while the top ones are a basis of its
left-nullspace. The choice

W ∗ =

⎛
⎝ I3n 03n×2n

02n×3n
0n
1
T In

In/T 2

0n

⎞
⎠ ,

leads to a matrix N satisfying the expression N H2 =(
02n 02n
I2n 02n

)
and then N = W ∗. Based again on the structure

of (20) and the columns of W , F can be factorized
as F = F ∗N , with F ∗ = (F ∗

1 , F
∗
2 ), so that (20) itself

can be written as (F ∗
1 , F

∗
2 )
(
02n 02n
I2n 02n

)
= (W, 03n×2n),

from which it follows F ∗
2 = W , while F ∗

1 is still free.
Plugging F into the first condition in (20) yields
E = A− (F ∗

1 ,W )NO2 = A− (F ∗
1 ,W )(RT , QT )T , with

R =

⎛
⎝In 0n 0n
0n 0n In
In T In 0n

⎞
⎠ , Q =

(
1
T 2 In

2
T In 0n

0n 0n
1
T In

)
,

and then
E = A−WQ− F ∗

1R =

=

⎛
⎝ 0n In 0n
− 1

T 2 In − 2
T In 0n

0n 0n − 1
T In

⎞
⎠− F ∗

1

⎛
⎝In 0n 0n
0n 0n In
In T In 0n

⎞
⎠ .

To finally ensure that E is Schur and diagonal as in (15),
it suffices to choose F ∗

1 = (A−WQ− diag(λ1, . . . , λ3n))R,
which also leads to F ’s expression in (15).

3) Unknown Input Reconstruction: Finally, an estimate, that
is optimal in the least square sense, of the delayed unknown
input wk−2 can be retrieved from the conditions:

X̂k−2+1−Xk−2+1=X̂k−2+1 −AXk−2 −B Uk−2 −Wwk−2 ,

Ŷk−2 − Yk−2=CX̂k−2 − Yk−2 .

Once the delayed state estimate X̂k−2 has converged to Xk−2,
the right hand-sides of these equations converge to zero; then
the remaining expressions can be rearranges as follows:(

W

02n

)
wk−2 =

(
X̂k−2+1 −AXk−2 −B Uk−2

Yk−2 − CX̂k−2

)
.

Left-multiplying both sides of this equation by a matrix G =
(WTW )−1(WT , 02n), whose computation leads to the formula
in theorem’s statement, allows obtaining the sought (17), which
concludes the proof. �

V. ROBUST CONTROL AND CLOSED-LOOP STABILITY

Given desired trajectories, qd(t) and σd(t), for the com-
pound configuration, define the desired state signal sam-
ples Xd,k = (qd(kT )

T , q̇d(kT )
T , Sd(kT )

T )T , with Sd(t) =∫ t

0 σd(τ)dτ . Then, using the information retrieved by the DUIO,
the following can be found:

Theorem 2: Given an articulated soft robot as in (8), the
feedback-feedforward control law
Uk = K(X̂k−2 −Xd,k) + P (Xd,k+1 −AXd,k −W ŵk−2) ,

(21)
where X̂k−2 and ŵk−2 are found using (14) and (17), P =
(BTB)−1BT , and K is such that A+BK is Schur, ensures
global and robust bounded stability for the tracking error of
desired position and stiffness trajectories, qd(t) and σd(t).

Proof: The dynamics of the discrete-time tracking error,
Zk = Xk −Xd,k, reads

Zk+1 = AXk +BUk +Wwk −Xd,k+1 =
= AZk +BUk −Xd,k+1 +AXd,k +Wwk .

(22)

A desired convergent dynamics for the state vector is Zk+1 =
A∗ Zk, with A∗ = A+BK, where K ∈ R2np×3n is a free
gain matrix that can be chosen to make matrix A∗ Schur.
Comparing such desired expression with (22) yields the con-
ditionBUk = BKZk +Xd,k+1 −AXd,k −Wwk. In practice,
as only the estimates of Xk and wk are available with 2-
sample delays, the following best-effort condition can be
ensured:

BUk = BKẐk +Xd,k+1 −AXd,k −Wŵk−2 , (23)

with Ẑk = X̂k−2 −Xd,k. The overall closed-loop dynamics,
including the tracking error dynamics in (22) and the estimation
error ek from Theorem 1 reads(

Zk+1

ek+1

)
=

(
A∗ 03n
03n E

)(
Zk

ek

)
+

(
ϕk

03n

)
, (24)

with ϕk = BK(Ẑk − Zk) +Ww̃k and w̃k = wk − ŵk−2. It
can be seen, as expected by its design, that the dynamics of
the estimation error ek is independent of Uk and wk, and hence
its closed-loop convergence is ensured by E being Schur. That
being so, after a transient in the observer estimates, X̂k−2 �
Xk−2 and ŵk−2 � wk−2. Moreover, considering the small de-
layL = 2 [21] and assuming a small enough sampling period T ,
it also holds X̂k−2 � Xk, Uk−2 � Uk, wk−2 � wk, Yk−2 � Yk.
As a result, Ẑk � Zk and w̃k � wk − ŵk � 0 and the forcing
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TABLE I
NOMINAL PARAMETERS OF THE VSA-DRIVEN ROBOT

term ϕk in the closed-loop dynamics vanishes, i.e. ϕk tends
to zero. More precisely, it can be shown that Ẑk−1 − Zk−1 =

A(Ẑk−2 − Zk−2) +W (ŵk−2 − wk−2) � 0, which in turn
implies Ẑk − Zk = A(Ẑk−1 − Zk−1) +W (ŵk−1 − wk−1) �
W (ŵk−1 − wk−1). As (A,B) is controllable, a matrix K mak-
ing A∗ Schur always exists, thus ensuring ||A∗Zk|| < ||Zk||.
Also, for small T [21], ŵk−1 � ŵk−2 � wk−2. Then, from (24),
Zk evolves with a stable dynamics subject to a forcing sig-
nal ϕ such that ||ϕ|| = ||BKW (wk−2 − wk−1) +W (wk −
wk−2)|| ≤ T (||B|| ||K||+ 2)γ, where γ is the absolute maxi-
mum variation of wk between any two consecutive samples. A
possible estimate for this quantity is γ = max(q̈max, Ṡmax) =
max(q̈max, σmax), where q̈max and σmax are the maximum
reachable acceleration and stiffness.Zk converges to the equilib-
rium Zk = (I3n −A∗)−1ϕ, whose norm is ||Zk|| ≤ T ||(I3n −
A∗)−1||(||B|| ||K||+ 2)γ and hence is upper bounded by a
quantity proportional to T . Finally, left-multiplying both mem-
bers of (23) by the pseudoinverse of B, the control law in (21)
is obtained. �

VI. METHOD APPLICATION AND EVALUATION

This section shows the performance of the proposed solution
when applied to the 3-degree-of-freedom ASR in Fig. 1. In the
considered hardware setup, each joint of the robot is driven
by a qbmove advanced actuator [22] that allows simultaneous
settings of link position and joint stiffness. The section is or-
ganized in three parts: 1) instances of the proposed estimator
and robust controller are derived based on a coarse but very
convenient simplification of the robot’s compound dynamics; 2)
their effectiveness and robustness are shown in simulation with
large model uncertainty due to the few amount of information
used for their derivation; 3) experimental test results with the
adopted real hardware setup are reported.

A. Derivation of Estimator and Controller Components

To test the robustness of the method and to show also the
few amount of information used to derive the correspond-
ing estimator and controller, first of all, all links’ interactions
are completely neglected, thereby leading to a nominal iner-
tia matrix inverse that is diagonal and given by M̄(q)−1 =
diag(1/I1, 1/I2, 1/I3) (cf. e.g. [23]), where Ii are the solely link
inertia constants whose values are reported in Table I. Secondly,
from [22], the i-th VSA device can apply the total elastic torque
and set the joint stiffness given by the following VSA-specific
formulas

τei = ki,a sinh(ui,a) + ki,b sinh(ui,b) ,
σi = ai,aki,a cosh(ui,a) + ai,bki,b cosh(ui,b) ,

(25)

where ui,a = ai,aφi,a, ui,b = ai,bφi,b, and where ki,a, ki,b, ai,a,
and ai,b are suitable constants whose nominal values ka, kb,
aa, and ab, experimentally identified by the manufacturer, are
reported again in Table I. Given the convex behavior of such

Fig. 2. Robustness to parametric (left), input matrix B (middle) and inertia
matrix M̄ (right) uncertainties, ranging from 25% to 100% deviation from their
nominal values. Green indicates the closed-loop behavior with nominal choices
for parameters, B and M̄ . Position and stiffness tracking errors grow as uncer-
tainty increases, yet, the closed-loop system performance does not deteriorate
considerably. Tracking errors exist during time-varying references and are due to
worse feedforward compensation, originating from larger parametric uncertainty
and model simplification. Indeed, they nicely converge when references become
still (last phase of left plots).

functions, one can expand them as
τei = πi(t)(ui,a + ui,b) , σi = μi(t)(ui,a + ui,b) , (26)

where πi(t) and μi(t) are time-varying yet bounded slope
signals. While for our approach any positive constant value
can be used in place of these signals, it is reasonable to
conservatively tune them bargaining the maximum elastic
torque τemax and stiffness σmax demands. To do so, using
the prosthaphaeresis formulas for hyperbolic functions, with
ai,a = ai,b = a and ki,a = ki,b = k, one can rewrite (25) as
τei = 2k κω and σi = 2ak εω, with κ = sinh((ui,a + ui,b)/2),
ω = cosh((ui,a − ui,b)/2), and ε = cosh((ui,a + ui,b)/2).
The ratio ε/κ = coth((ui,a + ui,b)/2) = σi/(aτ

e
i ) allows

finding (ui,a + ui,b)/2 = arccoth(σi/(aτ
e
i )) = χ1. Then,

from the relation ω = τei /(2k κ), one also obtains
(ui,a − ui,b)/2 = arccosh(τei /(2k sinh(χ1))) = χ2, and

finally
(
ui,a

ui,b

)
=
(

1
2

1
2

1
2 − 1

2

)−1(
χ1

χ2

)
. Evaluating this last relation

for the maximum torque and stiffness demands allows obtaining
the maximum values for ui,a and ui,b, which are then converted
to the maximum of πi andμi. For the adopted qbmove actuators,
it holds τemax = 7 Nm and σmax = 83.5 Nm/rad, and hence it
holds πi = 3.3416 and μi = 37.2032.

In accordance with this reasoning and the proposed formal-
ization, the nominal matrices of the actuation-related terms are
chosen as Π̄ = diag(Π̄1, Π̄2, Π̄3), Σ̄ = diag(Σ̄1, Σ̄2, Σ̄3), with
Π̄i = (πi, πi, 0, 0) and Σ̄i = (0, 0, μi, μi), for all i, and the
(manipulable) input vector is

Γ(φa, φb)=(γT
1 (φ1,a, φ1,b), γ

T
2 (φ2,a, φ2,b), γ

T
3 (φ3,a, φ3,b))

T ,

with γi = (ui,a, ui,b)
T , for all i. Accordingly, the (manipulable)

input vector is Uk = Γ(φa(kT ), φb(kT )) and the matrices of
the estimator are of immediate writing from Theorem 1, while
they are omitted here for the sake of space. Finally, it should be
recalled, as stated in Section III, that the actual inputs to the i-th
VSA device are the motor positions, θi,a andθi,b. They are finally
determined by inverting (1) and are given by θci,a = qi − ui,a/a
and θci,b = qi − ui,b/a.

B. Effectiveness and Robustness Evaluation

To show its validity and robustness, the proposed approach
is tested in Matlab/Simulink with parametric, nominal inertia
matrix M̄ , and input matrix B uncertainties. Nominal param-
eters are reported in Table I. Nominal matrix M̄ is set to
be diag(I1, I2, I3) representing the case where all off-diagonal
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Fig. 3. Robustness to large uncertainty and comparison with ESO. Results from typical simulation runs with 100% deviation of system parameters from
the nominal values, as well as a drastic simplification of the system model. Despite the large uncertainty, when the proposed DUIO-solution is used, the desired
trajectories are accurately tracked as a result of fast and precise estimation of the disturbance perturbing the nominal system. The ESO-based solution under-performs
especially when the disturbance signals are rapidly changing.

Fig. 4. Experimental validation. Results from testing with real ASR pictured in Fig. 1, when the task is to simultaneously track sinusoidal position and stiffness
trajectories. The position and stiffness tracking errors are reported in red for each degree-of-freedom. Despite the drastically simplified robot model, upon which
the estimator from Theorem 1 and the controller from Theorem 2 are derived, the proposed solution can robustly track the desired signals. Commanded θci,j and
executed θi,j motor angles are shown and largely within the available range of the involved VSA devices.
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entries of M(q) are neglected. Perturbation of parameters, M̄ ,
and B range from a 25% to a 100% increase from their nominal
values. Fig. 2 depicts the position and stiffness tracking errors
for the robot’s base segment, being the one with the most visible
trends. A common behavior is that higher tracking errors appear
with larger uncertainty, yet, the closed-loop performance is
not significantly deteriorated even with substantial uncertainty.
Noticeably, this shows that the method is robust with respect to
the choice of M̄ and B, which, in practice, allows neglecting all
off-diagonal entries of M(q) and approximating the diagonal
ones even up to a relative error of 100%.

Moreover, the proposed solution is compared in Fig. 3 with an
ESO-based one [24], initialized with position and stiffness track-
ing errors of (0.1,0.1,0.1) rad and (4,4,4) Nm/rad. The robust
DUIO-based control law in (21) is used with the same control
gains and, specifically, matrixK is chosen so that the closed loop
matrix A∗ are in the unit circle, and with desired references of
the form qi,d = Qi sinωqit and σi,d = εi +Aσi

| sinωσi
t|, for

i ∈ {1, 2, 3}. Fig. 3 shows that the UIO solution outperforms
the ESO one, achieves a faster and more precise disturbance
estimation and allows better tracking errors.

C. Experimental Validation

An experimental validation of the proposed solution is pre-
sented using the real hardware pictured in Fig. 1. Nominal geo-
metric and inertial parameter values are in Table I and the desired
trajectories have the same form as in the simulations, so as to
capture similar behaviors, and have been chosen with various
amplitudes and frequencies for each joint. The controller is also
set as in Section VI-A. Link positions are measured through
the encoders embedded in the qbmove actuators, while joint
stiffness is obtained through the use of the stiffness estimator
in [25]. As it can be seen in Fig. 4, the proposed solution
robustly tracks the desired signals, and imperfect yet practically
negligible tracking errors occur only very rarely, which is due
to intrinsic slackness of the actuators. Noteworthy, despite the
drastically simplified robot model, used to design the estimator
from Theorem 1 and the controller from Theorem 2, each
link position and joint stiffness are smoothly and successfully
controlled.

VII. CONCLUSION

This letter formulated the model of VSA-driven articulated
soft robots with the factorized actuator matrix suitable for the
decomposition into the nominal and uncertain dynamics, and
it derived a novel solution for their control. Using delayed
unknown input observer theory and disturbance-observer-based
control, the proposed approach enables successful position and
stiffness tracking, even with large disturbance due to the model
uncertainty. Validation of the method was carried out in simula-
tions and experiments, proving also its robustness to parametric
and structural uncertainties. Future work will explore the advan-
tages of information decoupling between possible external in-
teraction and uncertainty estimation, due to parametric changes
and actuator failures.
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[7] M. Trumić, K. Jovanović, and A. Fagiolini, “Decoupled nonlinear adaptive
control of position and stiffness for pneumatic soft robots,” Int. J. Robot.
Res., vol. 40, no. 1, pp. 277–295, 2021.

[8] S. S. M. Salehian, M. Khoramshahi, and A. Billard, “A dynamical system
approach for softly catching a flying object: Theory and experiment,” IEEE
Trans. Robot., vol. 32, no. 2, pp. 462–471, Apr. 2016.

[9] R. Mengacci, M. Garabini, G. Grioli, M. G. Catalano, and A. Bicchi,
“Overcoming the torque/stiffness range tradeoff in antagonistic variable
stiffness actuators,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 6,
pp. 3186–3197, Dec. 2021.

[10] A. Albu-Schäffer and A. Bicchi, “Actuators for soft robotics,” in Handbook
of Robotics. B. Siciliano and O. Khatib, Eds. Berlin, Germany: Springer,
2016, ch. 21, pp. 243–282.

[11] M. Ruderman, T. Bertram, and M. Iwasaki, “Modeling, observation, and
control of hysteresis torsion in elastic robot joints,” Mechatronics, vol. 24,
no. 5, pp. 407–415, 2014.

[12] I. Sardellitti, G. A. Medrano-Cerda, N. Tsagarakis, A. Jafari, and D.
G. Caldwell, “Gain scheduling control for a class of variable stiffness
actuators based on lever mechanisms,” IEEE Trans. Robot., vol. 29, no. 3,
pp. 791–798, Jun. 2013.

[13] F. Petit, A. Daasch, and A. Albu-Schäffer, “Backstepping control of
variable stiffness robots,” IEEE Trans. Control Syst. Technol., vol. 23,
no. 6, pp. 2195–2202, Nov. 2015.

[14] M. Keppler, D. Lakatos, C. Ott, and A. Albu-Schäffer, “Elastic structure
preserving (ESP) control for compliantly actuated robots,” IEEE Trans.
Robot., vol. 34, no. 2, pp. 317–335, Apr. 2018.

[15] F. Angelini et al., “Decentralized trajectory tracking control for soft robots
interacting with the environment,” IEEE Trans. Robot., vol. 34, no. 4,
pp. 924–935, Aug. 2018.

[16] F. Petit and A. Albu-Schäffer, “State feedback damping control for a
multi DOF variable stiffness robot arm,” in Proc. IEEE Int. Conf. Robot.
Automat., 2011, pp. 5561–5567.

[17] S. Sundaram and C. N. Hadjicostis, “Delayed observers for linear sys-
tems with unknown inputs,” IEEE Trans. Autom. Control, vol. 52, no. 2,
pp. 334–339, Feb. 2007.

[18] A. H. Al-Bayati and Z. Skaf, “A comparative study of linear observers
applied to a DC servo motor,” in Proc. IEEE Int. Conf. Modelling, Identi-
fication Control, 2010, pp. 785–790.

[19] T. H. Chong, V. Chalvet, and D. J. Braun, “Analytical conditions for the
design of variable stiffness mechanisms,” in Proc. IEEE Int. Conf. Robot.
Automat., 2017, pp. 1241–1247.

[20] M. Mattioni, A. Moreschini, S. Monaco, and D. Normand-Cyrot, “On
feedback passivation under sampling,” in Proc. IEEE Amer. Control Conf.,
2021, pp. 3578–3583.

[21] K. Youcef-Toumi and O. Ito, “A time delay controller for systems with
unknown dynamics,” in Proc. Amer. Control Conf., 1988, pp. 904–913.

[22] Qbrobotics, Qbmove Advanced Kit - User Manual. Accessed: Feb. 15,
2022. [Online]. Available: https://qbrobotics.com/wp-content/uploads/
2021/08/qbmove-advanced-kit-Base-user-manual-1.pdf

[23] J. Kim, A. S. Lee, K. Chang, B. Schwarz, S. A. Gadsden, and M.
Al-Shabi, “Dynamic modeling and motion control of a three-link robotic
manipulator,” in Proc. Int. Conf. Artif. Life Robot., 2017, vol. 22,
pp. 380–383.

[24] S. E. Talole, J. P. Kolhe, and S. B. Phadke, “Extended-state-observer-based
control of flexible-joint system with experimental validation,” IEEE Trans.
Ind. Electron., vol. 57, no. 4, pp. 1411–1419, Apr. 2010.
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