Journal Papers
[1]
A. Bicchi, A.
Fagiolini, and L. Pallottino, “Toward a
society of robots: Behaviors, misbehaviors,
and security,” IEEE Robotics and
Automation Magazine, vol. 17, no. 4,
pp. 26–36, 2010, doi: 10.1109/MRA.2010.938839.
[2]
A. Fagiolini and A.
Bicchi, “On the robust synthesis of
logical consensus algorithms for distributed
intrusion detection,”
Automatica,
vol. 49, no. 8, pp. 2339–2350, 2013, doi: 10.1016/j.automatica.2013.04.033.
[3]
F. Alonge, F.
D’Ippolito, A. Fagiolini, and A. Sferlazza,
“Extended complex kalman filter for
sensorless control of an induction
motor,”
Control Engineering Practice, vol. 27,
no. 1, pp. 1–10, 2014, doi: 10.1016/j.conengprac.2014.02.007.
[4]
F. Alonge, T. Cangemi,
F. D’Ippolito, A. Fagiolini, and A. Sferlazza,
“Convergence analysis of extended kalman
filter for sensorless control of induction
motor,” IEEE Transactions on
Industrial Electronics, vol. 62, no. 4,
pp. 2341–2352, 2015, doi: 10.1109/TIE.2014.2355133.
[5]
G. Oliva, D. La Manna,
A. Fagiolini, and R. Setola, “Distributed
data clustering via opinion
dynamics,”
International Journal of Distributed Sensor
Networks, vol. 2015, 2015, doi: 10.1155/2015/753102.
[6]
A. Fagiolini, N.
Dubbini, S. Martini, and A. Bicchi,
“Convergence
analysis of distributed set-valued
information systems,” IEEE
Transactions on Automatic Control, vol.
61, no. 6, pp. 1477–1491, 2016, doi: 10.1109/TAC.2015.2480176.
[7]
C. Bernardeschi, A.
Domenici, A. Fagiolini, and M. Palmieri,
“Block-based
models and theorem proving in model-based
development,” Electronic
Communications of the EASST, vol. 79,
pp. 1–8, 2020, Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111371081&partnerID=40&md5=e68299571bfecde0aecfffecfdb3b3d1
[8]
A. Fagiolini, M.
Trumic, and K. Jovanovic, “An input
observer-based stiffness estimation approach
for flexible robot joints,” IEEE
Robotics and Automation Letters, vol.
5, no. 2, pp. 1843–1850, 2020, doi: 10.1109/LRA.2020.2969952.
[9]
S. Pedone and A.
Fagiolini, “Racecar longitudinal control
in unknown and highly-varying driving
conditions,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 11,
pp. 12521–12535, 2020, doi: 10.1109/TVT.2020.3023059.
[10]
F. Alonge, F.
D’Ippolito, A. Fagiolini, G. Garraffa, and A.
Sferlazza, “Trajectory robust control of
autonomous quadcopters based on model
decoupling and disturbance
estimation,”
International Journal of Advanced Robotic
Systems, vol. 18, no. 2, 2021, doi: 10.1177/1729881421996974.
[11]
S. I. Azid, K. Kumar,
M. Cirrincione, and A. Fagiolini, “Robust
motion control of nonlinear quadrotor model
with wind disturbance observer,”
IEEE
Access, vol. 9, pp. 149164–149175,
2021, doi: 10.1109/ACCESS.2021.3124609.
[12]
S. I. Azid, K. Kumar,
M. Cirrincione, and A. Fagiolini, “Wind
gust estimation for precise quasi-hovering
control of quadrotor aircraft,”
Control
Engineering Practice, vol. 116, 2021,
doi: 10.1016/j.conengprac.2021.104930.
[13]
M. Trumic, C. D.
Santina, K. Jovanovic, and A. Fagiolini,
“Adaptive
control of soft robots based on an enhanced
3D augmented rigid robot matching,”
IEEE Control Systems Letters, vol. 5,
no. 6, pp. 1934–1939, 2021, doi: 10.1109/LCSYS.2020.3047737.
[14]
M. Trumić, K.
Jovanović, and A. Fagiolini, “Decoupled
nonlinear adaptive control of position and
stiffness for pneumatic soft robots,”
International Journal of Robotics
Research,
vol. 40, no. 1, pp. 277–295, 2021, doi: 10.1177/0278364920903787.
[15]
F. Alonge et
al.,
“Nonlinear robust control of a quadratic
boost converter in a wide operation range,
based on extended linearization
method,”
Electronics (Switzerland), vol. 11, no.
15, 2022, doi: 10.3390/electronics11152336.
[16]
S. Pedone, M. Trumic,
K. Jovanovic, and A. Fagiolini, “Robust
and decoupled position and stiffness control
for electrically-driven articulated soft
robots,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp.
9059–9066, 2022, doi: 10.1109/LRA.2022.3188903.
[17]
V. P. Shankaran, S. I.
Azid, U. Mehta, and A. Fagiolini,
“Improved
performance in quadrotor trajectory tracking
using MIMO PI-d control,” IEEE
Access, vol. 10, pp. 110646–110660,
2022, doi: 10.1109/ACCESS.2022.3214810.
[18]
M. Trumic, G. Grioli,
K. Jovanovic, and A. Fagiolini,
“Force/torque-sensorless
joint stiffness estimation in articulated
soft robots,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp.
7036–7043, 2022, doi: 10.1109/LRA.2022.3178467.
[19]
C. Bernardeschi, A.
Domenici, A. Fagiolini, and M. Palmieri,
“Co-simulation
and formal verification of co-operative
drone control with logic-based
specifications,” Computer
Journal,
vol. 66, no. 2, pp. 295–317, 2023, doi: 10.1093/comjnl/bxab161.
[20]
S. Pedone and A.
Fagiolini, “Robust discrete-time lateral
control of racecars by unknown input
observers,” IEEE Transactions on
Control Systems Technology, vol. 31,
no. 3, pp. 1418–1426, 2023, doi: 10.1109/TCST.2022.3214054.
[21]
M. Trumic, C. D.
Santina, K. Jovanovic, and A. Fagiolini,
“On
the stability of the soft pendulum with
affine curvature: Open-loop, collocated
closed-loop, and switching control,”
IEEE Control Systems Letters, vol. 7,
pp. 385–390, 2023, doi: 10.1109/LCSYS.2022.3187612.
[22]
S. I. Azid, S. A. Ali, M. Kumar, M. Cirrincione
and A. Fagiolini,
"Precise Trajectory Tracking of
Multi-Rotor UAVs using
Wind Disturbance Rejection Approach,"
in IEEE Access, 2023, Early Access,
doi:10.1109/ACCESS.2023.3308297.
[23]
M. Palmieri, C. Quadri, A. Fagiolini, C.
Bernardeschi
"Co-simulated digital twin on the network edge: A vehicle platoon,"
in Computer Communications, 2023, Early
Access,
doi:10.1016/j.comcom.2023.09.019.
[24]
C. Bernardeschi, A.
Domenici, A. Fagiolini, and M. Palmieri.
“Design and Validation of Cyber-
Physical Systems Through Co-Simulation: The
Voronoi Tessellation Use Case”, In:
IEEE Access (2024), pp. 1064–1075.
[25]
C. Bernardeschi, A.
M. Palmieri, C. Quadri, A. Fagiolini, and C.
Bernardeschi.
“Co-simulated digital twin on the network edge:
A
vehicle platoon”. In: Computer
Communications, 2023, pp. 35– 47.
[26]
S. Pedone and A.
Fagiolini. “Robust Discrete-Time Lateral
Control of Racecars by Unknown Input
Observers”.
In: IEEE Transactions on Control Systems
Technology, 2023. pp.
1418–1426.
Conference Papers
[1]
A. Fagiolini,
H. Arisumi, and A. Bicchi,
“Visual-based
feedback control of casting
manipulation,”
Proceedings
- IEEE International Conference on
Robotics and Automation, vol.
2005. pp. 2191–2196, 2005. doi: 10.1109/ROBOT.2005.1570438.
[2]
A. Fagiolini,
L. Greco, A. Bicchi, B. Piccoli, and A.
Marigo, “Symbolic control for
underactuated differentially flat
systems,” Proceedings -
IEEE International Conference on
Robotics and Automation, vol.
2006. pp. 1649–1654, 2006. doi: 10.1109/ROBOT.2006.1641943.
[3]
A. Fagiolini,
G. Valenti, L. Pallottino, G. Dini, and
A. Bicchi, “Decentralized
intrusion detection for secure
cooperative multi-agent
systems,”
Proceedings of the IEEE Conference
on Decision and Control. pp.
1553–1558, 2007. doi: 10.1109/CDC.2007.4434902.
[4]
A. Fagiolini,
G. Valenti, L. Pallottino, G. Dini, and
A. Bicchi, “Local monitor
implementation for decentralized
intrusion detection in secure
multi-agent systems,”
Proceedings
of the 3rd IEEE International
Conference on Automation Science and
Engineering, IEEE CASE 2007.
pp. 454–459, 2007. doi: 10.1109/COASE.2007.4341717.
[5]
L. Greco, A.
Fagiolini, A. Bicchi, and B. Piccoli,
“Steering dynamical systems with
finite plans and limited path
length,” 2007 European
Control Conference, ECC 2007.
pp. 4685–4690, 2007. doi: 10.23919/ecc.2007.7068855.
[6]
A. Bicchi, A.
Fagiolini, G. Dini, and I. M. Savino,
“Tolerating malicious monitors in
detecting misbehaving
robots,”
Proceedings of the 2008 IEEE
International Workshop on Safety,
Security and Rescue Robotics, SSRR
2008. pp. 109–114, 2008. doi:
10.1109/SSRR.2008.4745886.
[7]
A. Fagiolini,
M. Pellinacci, G. Valenti, G. Dini, and
A. Bicchi, “Consensus-based
distributed intrusion detection for
multi-robot systems,”
Proceedings
- IEEE International Conference on
Robotics and Automation. pp.
120–127, 2008. doi: 10.1109/ROBOT.2008.4543196.
[8]
A. Fagiolini,
L. Tani, A. Bicchi, and G. Dini,
“Decentralized
deployment of mobile sensors for
optimal connected sensing
coverage,”
Lecture Notes in Computer Science
(including subseries Lecture Notes
in Artificial Intelligence and
Lecture Notes in
Bioinformatics),
vol. 5067 LNCS, pp. 486–491, 2008, doi:
10.1007/978-3-540-69170-9_34.
[9]
A. Fagiolini,
E. M. Visibelli, and A. Bicchi,
“Logical
consensus for distributed network
agreement,” Proceedings
of the IEEE Conference on Decision
and Control. pp. 5250–5255,
2008. doi: 10.1109/CDC.2008.4738964.
[10]
S. Alicino
et
al., “A rough-terrain,
casting robot for the ESA lunar
robotics challenge,” 2009
IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS
2009. pp. 3336–3342, 2009. doi:
10.1109/IROS.2009.5354067.
[11]
A. Fagiolini,
F. Babboni, and A. Bicchi,
“Dynamic
distributed intrusion detection for
secure multi-robot systems,”
Proceedings - IEEE International
Conference on Robotics and
Automation. pp. 2723–2728,
2009. doi: 10.1109/ROBOT.2009.51526.
[12]
A. Fagiolini,
S. Martini, and A. Bicchi,
“Set-valued
consensus for distributed clock
synchronization,” 2009
IEEE International Conference on
Automation Science and Engineering,
CASE 2009. pp. 116–121, 2009.
doi: 10.1109/COASE.2009.5234145.
[13]
A. Fagiolini,
S. Martini, N. Dubbini, and A. Bicchi,
“Distributed consensus on boolean
information,” IFAC
Proceedings Volumes
(IFAC-PapersOnline), vol. 1.
pp. 72–77, 2009. doi: 10.3182/20090924-3-IT-4005.0064.
[14]
A. Fagiolini,
F. A. W. Belo, M. G. Catalano, F.
Bonomo, S. Alicino, and A. Bicchi,
“Design
and control of a novel 3D casting
manipulator,” Proceedings
- IEEE International Conference on
Robotics and Automation. pp.
4169–4174, 2010. doi: 10.1109/ROBOT.2010.5509829.
[15]
A. Fagiolini,
S. Martini, D. Di Baccio, and A. Bicchi,
“A self-routing protocol for
distributed consensus on logical
information,” IEEE/RSJ
2010 International Conference on
Intelligent Robots and Systems, IROS
2010 - Conference Proceedings.
pp. 5151–5156, 2010. doi: 10.1109/IROS.2010.5650096.
[16]
S. Manca, A.
Fagiolini, and L. Pallottino,
“Decentralized
coordination system for multiple
AGVs in a structured
environment,”
IFAC Proceedings Volumes
(IFAC-PapersOnline), vol. 44.
pp. 6005–6010, 2011. doi: 10.3182/20110828-6-IT-1002.01877.
[17]
S. Martini, D.
Di Baccio, A. Fagiolini, and A. Bicchi,
“Robust network agreement on
logical information,”
IFAC
Proceedings Volumes
(IFAC-PapersOnline), vol. 44.
pp. 13905–13911, 2011. doi: 10.3182/20110828-6-IT-1002.03553.
[18]
S. Martini, A.
Fagiolini, G. Zichittella, M. Egerstedt,
and A. Bicchi, “Decentralized
classification in societies of
autonomous and heterogenous
robots,”
Proceedings - IEEE International
Conference on Robotics and
Automation. pp. 32–39, 2011.
doi: 10.1109/ICRA.2011.5979760.
[19]
S. Martini, A.
Fagiolini, L. Giarre, and A. Bicchi,
“Identification of distributed
systems with logical interaction
structure,” Proceedings
of the IEEE Conference on Decision
and Control. pp. 5228–5233,
2012. doi: 10.1109/CDC.2012.6426124.
[20]
L. Cancemi, A.
Fagiolini, and L. Pallottino,
“Distributed
multi-level motion planning for
autonomous vehicles in large scale
industrial environments,”
IEEE
International Conference on Emerging
Technologies and Factory Automation,
ETFA. 2013. doi: 10.1109/ETFA.2013.6647973.
[21]
G. Conte et
al., “ROAD project:
Robotics for assisted
diving,”
2014 22nd Mediterranean Conference
on Control and Automation, MED
2014.
pp. 853–856, 2014. doi: 10.1109/MED.2014.6961480.
[22]
A. Fagiolini,
G. Dini, and A. Bicchi,
“Distributed
intrusion detection for the security
of industrial cooperative robotic
systems,” IFAC
Proceedings Volumes
(IFAC-PapersOnline), vol. 19.
pp. 7610–7615, 2014. doi: 10.3182/20140824-6-za-1003.02666.
[23]
A. Fagiolini,
M. Housh, A. Ostfeld, and A. Bicchi,
“Distributed estimation and
control of water distribution
networks by logical
consensus,”
ISCCSP 2014 - 2014 6th International
Symposium on Communications, Control
and Signal Processing,
Proceedings.
pp. 239–242, 2014. doi: 10.1109/ISCCSP.2014.6877859.
[24]
G. Oliva, D. L.
Manna, A. Fagiolini, and R. Setola,
“Distance-constrained data
clustering by combined k-means
algorithms and opinion dynamics
filters,” 2014 22nd
Mediterranean Conference on Control
and Automation, MED 2014. pp.
612–619, 2014. doi: 10.1109/MED.2014.6961441.
[25]
A. D’Alessandro
et al., “A low cost
customizable micro-ROV for
environmental research-applications,
advances and challenges,”
2nd
Applied Shallow Marine Geophysics
Conference, Near Surface Geoscience
2016. 2016. doi: 10.3997/2214-4609.201602151.
[26]
A. D’Alessandro
et al., “Characterization
of MEMS accelerometer self-noise by
means of PSD and allan variance
analysis,” Proceedings -
2017 7th International Workshop on
Advances in Sensors and Interfaces,
IWASI 2017. pp. 159–164, 2017.
doi: 10.1109/IWASI.2017.7974238.
[27]
G. Vitale, A.
D’Alessandro, A. Costanza, and A.
Fagiolini, “Low-cost underwater
navigation systems by multi-pressure
measurements and AHRS data,”
OCEANS 2017 - Aberdeen, vol.
2017–October. pp. 1–5, 2017. doi: 10.1109/OCEANSE.2017.8084621.
[28]
D. Caporale
et
al., “A planning and
control system for self-driving
racing vehicles,” IEEE
4th International Forum on Research
and Technologies for Society and
Industry, RTSI 2018 -
Proceedings.
2018. doi: 10.1109/RTSI.2018.8548444.
[29]
A. Domenici, A.
Fagiolini, and M. Palmieri,
“Integrated
simulation and formal verification
of a simple autonomous
vehicle,”
Lecture Notes in Computer Science
(including subseries Lecture Notes
in Artificial Intelligence and
Lecture Notes in
Bioinformatics),
vol. 10729 LNCS, pp. 300–314, 2018, doi:
10.1007/978-3-319-74781-1_21.
[30]
A. Duz, S.
Phillips, A. Fagiolini, R. G. Sanfelice,
and F. Pasqualetti, “Stealthy
attacks in cloud-connected linear
impulsive systems,”
Proceedings
of the American Control
Conference,
vol. 2018–June. pp. 146–152, 2018. doi:
10.23919/ACC.2018.8431900.
[31]
H. K. Mudaliar,
D. M. Kumar, S. I. Azid, M. Cirrincione,
A. Fagiolini, and M. Pucci,
“Dynamical
compensation of the load torque in a
high-performance electrical drive
with an induction motor,”
ICEMS
2018 - 2018 21st International
Conference on Electrical Machines
and Systems. pp. 1235–1240,
2018. doi: 10.23919/ICEMS.2018.8549162.
[32]
G. Oliva, A.
Gasparri, A. Fagiolini, and C. N.
Hadjicostis, “Distributed and
proximity-constrained c-means for
discrete coverage control,”
2017 IEEE 56th Annual Conference on
Decision and Control, CDC 2017,
vol. 2018–January. pp. 1584–1589, 2018.
doi: 10.1109/CDC.2017.8263877.
[33]
M. Palmieri, C.
Bernardeschi, A. Domenici, and A.
Fagiolini, “Demo: Co-simulation of
UAVs with INTO-CPS and
PVSio-web,”
Lecture Notes in Computer Science
(including subseries Lecture Notes
in Artificial Intelligence and
Lecture Notes in
Bioinformatics),
vol. 11176 LNCS, pp. 52–57, 2018, doi:
10.1007/978-3-030-04771-9_5.
[34]
C. Sciortino
and A. Fagiolini,
“ROS/gazebo-based
simulation of quadcopter
aircrafts,”
IEEE 4th International Forum on
Research and Technologies for
Society and Industry, RTSI 2018 -
Proceedings. 2018. doi: 10.1109/RTSI.2018.8548411.
[35]
F. Alonge, F.
D’Ippolito, A. Fagiolini, G. Garraffa,
F. M. Raimondi, and A. Sferlazza,
“Tuning
of extended kalman filters for
sensorless motion control with
induction motor,” 2019
AEIT International Conference of
Electrical and Electronic
Technologies for Automotive, AEIT
AUTOMOTIVE 2019. 2019. doi: 10.23919/EETA.2019.8804540.
[36]
C.
Bernardeschi, A. Fagiolini, M. Palmieri,
G. Scrima, and F. Sofia,
“ROS/gazebo
based simulation of co-operative
UAVs,” Lecture Notes in
Computer Science (including
subseries Lecture Notes in
Artificial Intelligence and Lecture
Notes in Bioinformatics), vol.
11472 LNCS, pp. 321–334, 2019, doi: 10.1007/978-3-030-14984-0_24.
[37]
D. Caporale
et
al., “Towards the design
of robotic drivers for full-scale
self-driving racing cars,”
Proceedings - IEEE International
Conference on Robotics and
Automation, vol. 2019–May. pp.
5643–5649, 2019. doi: 10.1109/ICRA.2019.8793882.
[38]
C.
Bernardeschi, A. Domenici, M. Palmieri,
and A. Fagiolini, “Co-simulation
of bio-inspired multi-agent
algorithms,” Simulation
Series, vol. 52. pp. 230–241,
2020. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099293028&partnerID=40&md5=66ed886db913d175169f25decb944481
[39]
K. Kumar, S. I.
Azid, A. Fagiolini, and M. Cirrincione,
“Erle-copter simulation using ROS
and gazebo,” 20th IEEE
Mediterranean Electrotechnical
Conference, MELECON 2020 -
Proceedings. pp. 259–263, 2020.
doi: 10.1109/MELECON48756.2020.9140476.
[40]
M. Trumić, K.
Jovanović, and A. Fagiolini,
“Comparison
of model-based simultaneous position
and stiffness control techniques for
pneumatic soft robots,”
Mechanisms
and Machine Science, vol. 84,
pp. 218–226, 2020, doi: 10.1007/978-3-030-48989-2_24.
[41]
D. M. Kumar, M.
Cirrincione, H. K. Mudaliar, M. Di
Benedetto, A. Lidozzi, and A. Fagiolini,
“Development of a fractional PI
controller in an FPGA environment
for a robust high-performance PMSM
electrical drive,”
Proceedings
of the Energy Conversion Congress
and Exposition - Asia, ECCE Asia
2021. pp. 2427–2431, 2021. doi:
10.1109/ECCE-Asia49820.2021.9479450.
[42]
H. K. Mudaliar,
D. M. Kumar, M. Cirrincione, M. Di
Benedetto, and A. Fagiolini,
“Improving
the speed estimation by load torque
estimation in induction motor
drives: An MRAS and NUIO
approach,”
Proceedings of the Energy Conversion
Congress and Exposition - Asia, ECCE
Asia 2021. pp. 2421–2426, 2021.
doi: 10.1109/ECCE-Asia49820.2021.9479249.
[43]
M. Trumic, C.
Della Santina, K. Jovanovic, and A.
Fagiolini, “Adaptive control of
soft robots based on an enhanced 3D
augmented rigid robot
matching,”
Proceedings of the American Control
Conference, vol. 2021–May. pp.
4991–4996, 2021. doi: 10.23919/ACC50511.2021.9482817.
[44]
S. S. Chand
et
al., “Enhanced current
loop PI controllers with adaptive
feed-forward neural network via
estimation of grid impedance:
Application to three-phase grid-tied
PV inverters,” 2022 IEEE
Energy Conversion Congress and
Exposition, ECCE 2022. 2022.
doi: 10.1109/ECCE50734.2022.9947752.
[45]
J. Mazal et
al., “Preface,”
Lecture Notes in Computer Science
(including subseries Lecture Notes
in Artificial Intelligence and
Lecture Notes in
Bioinformatics),
vol. 13207 LNCS, p. v, 2022, Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128765366&partnerID=40&md5=81784e64b10e219ff66b63b805aa43fc
[46]
A. Mohammadi,
A. Fagiolini, M. Cirrincione, E. Garone,
A. Garone, and D. Varagnolo,
“Towards
an open database of assessment
material for STEM subjects:
Requirements and recommendations
from early field trials,”
IFAC-PapersOnLine,
vol. 55. pp. 7–12, 2022. doi: 10.1016/j.ifacol.2022.09.217.
[47]
H. K. Mudaliar,
A. Fagiolini, M. Cirrincione, S. S.
Chand, R. Prasad, and D. Kumar,
“Adaptive
feed-forward neural network for wind
power delivery,” 2022
International Conference on
Electrical Machines and Systems,
ICEMS 2022. 2022. doi: 10.1109/ICEMS56177.2022.9983098.
[48]
M. Palmieri, C.
Quadri, A. Fagiolini, G. P. Rossi, and
C. Bernardeschi, “Co-simulated
digital twin on the network edge:
The case of platooning,”
Proceedings
- 2022 IEEE 23rd International
Symposium on a World of Wireless,
Mobile and Multimedia Networks,
WoWMoM 2022. pp. 613–618, 2022.
doi: 10.1109/WoWMoM54355.2022.00096.
[49]
S. Pedone and
A. Fagiolini, “Robust longitudinal
control of self-driving racecar
models,” 2022 European
Control Conference, ECC 2022.
pp. 796–801, 2022. doi: 10.23919/ECC55457.2022.9837984.
[50]
R. Prasad
et
al., “Enhancing speed
loop PI controllers with adaptive
feed-forward neural networks:
Application to induction motor
drives,” 2022
International Conference on
Electrical Machines and Systems,
ICEMS 2022. 2022. doi: 10.1109/ICEMS56177.2022.9983335.