
Article

The International Journal of
Robotics Research
2024, Vol. 43(14) 2145–2182
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649241242812
journals.sagepub.com/home/ijr

Distributed misbehavior monitors for socially
organized autonomous systems

Adriano Fagiolini1, Gianluca Dini2, FedericoMassa2, Lucia Pallottino2

and Antonio Bicchi2,3

Abstract
In systems in which many heterogeneous agents operate autonomously, with competing goals and without a centralized
planner or global information repository, safety and performance can only be guaranteed by “social” rules imposed on the
behavior of individual agents. Social laws are structured in a way that they can be verified just by using local information
made available to an agent by a small number of its neighbors. Automobile mobility with traffic rules and logistics robots in
warehouses are canonical examples of such “regulated autonomy”, but many other fairly-competing autonomous systems
are to be expected shortly. In these systems, detecting whether an agent is not abiding by the rules is crucial for raising an
alert and taking appropriate countermeasures. However, the limited visibility due to the local nature of the information
makes the problem of misbehavior detection hard for any single agent, and only an exchange of information between agents
can provide sufficient clues to arrive at a decision. This paper attacks the misbehavior detection problem for a class of
socially organized autonomous systems, where the behavior of agents depends on the presence or absence of other
neighbors. We propose a solution involving a “local monitor”, which runs on each agent and includes a hybrid observer
and a set-valued consensus node. Based on whatever visibility is available, it reconstructs a set-valued occupancy estimate
of nearby regions and combines it with communicating neighbors to reach a shared view and a mismatch discovery. We
provide a formal framework for describing social rules that unify many different applications and a tool to generate code
automatically for local monitors. The technique is demonstrated in various systems, including self-driving cars, au-
tonomous forklifts, and distributed power plants.

Keywords
Misbehavior detection, security, robotics, set-valued consensus, self-driving cars, automatic generation

Received 16 January 2022; Revised 30 January 2024; Accepted 6 March 2024

Acting Editor In Chief: Tim Barfoot

Senior Editor: Dongjun Lee

Associate Editor: Roderich Gross

1. Introduction

Until a few decades ago, industrial manipulators operating in a
closed, structured, completely known and human-free envi-
ronment were the autonomous systems par excellence. More
recently, multi-robot systems composed of identical copies of a
given prototype robot have been developed to solve various
service tasks, such as optimal spatial deployment, patrolling and
surveillance, etc. In these systems, robots interact with one
another by sharing local information between neighbors
through distributed protocols, which allow for time synchro-
nization (Sinopoli et al., 2003), global agreement (Olfati-Saber
et al., 2007), space coverage (Cortes et al., 2004), andmotion in
formation (Fathian et al., 2018), to name a few. While being
very efficient, these protocols often assume that interaction is
encoded through signals with rigid formats and that robots are
used within known environments.

Nowadays, several promising robotic platforms have
become available, either with fixed or mobile bases, capable

of collaborating with humans (Ajoudani et al., 2018) and
each other (Kabir et al., 2021; Nguyen et al., 2019) in lesser-
known and dynamically changing shared workspaces.
Consequently, the challenge will soon be to safely and
efficiently organize the cooperation and coexistence of
many heterogeneous robots or agents, built by different
manufacturers, with different intelligence skills and perhaps
conflicting goals. These robots will be endowed with

1Mobile & Intelligent Robots @ Panormus Laboratory (MIRPALab),
Department of Engineering, University of Palermo, Palermo, Italy
2Department of Information Engineering and the Research Center “E.
Piaggio”, Università di Pisa, Pisa, Italy
3Italian Institute of Technology, Genova, Italy

Corresponding author:
Adriano Fagiolini, Mobile & Intelligent Robots @ Panormous
Laboratory (MIRPALab), Department of Engineering, University of
Palermo, Viale delle Scienze, Building 10, Palermo 90128, Italy.
Email: fagiolini@unipa.it

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649241242812
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0001-9943-1975
https://orcid.org/0000-0001-8635-5571
mailto:fagiolini@unipa.it
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649241242812&domain=pdf&date_stamp=2024-11-01

diversity-enhanced autonomy (Ayanian, 2019) and em-
powered by algorithms for, e.g., online parallel planning
under uncertainty (Cai et al., 2021), efficient multi-image
feature matching (Serlin et al., 2020), decentralized navi-
gation via Hamiltonian coordination primitives
(Mavrogiannis and Knepper, 2021), target estimation and
localization (Bourne et al., 2020), and collective swarm
formation (Dong and Sitti, 2020). Their robustness will also
be verifiable using real data sets now available (Agarwal
et al., 2020; Behley et al., 2021; Pitropov et al., 2021). Near
future scenarios will most likely involve open systems
composed of many heterogeneous robots cooperating with
each other and interacting with the environment. Robot
coexistence will require a paradigm shift in organizing
cooperation within a set of “social” rules, to be imposed on
the behavior of each individual robot and structured in such
a way that they can be verified simply by using local in-
formation (Shoham and Tennenholtz, 1995); these rules are
to be designed off-line or learned online, but will lead to the
autonomous robots involved being regarded as members of
a “society” (Bicchi et al., 2010; Ko et al., 2021; Pallottino
et al., 2007).

Probably the most widespread example of a socially
organized system are the flocks of vehicles on the road: they
include heterogeneous cars, trucks, and motorbikes that
enter and exit the flock at any time, are driven by human
drivers with different driving styles (Lefèvre et al., 2015a,
2015b; Kuderer et al., 2015) or are in autonomous mode
(Caporale et al., 2019; Kabzan et al., 2020), anticipate or
react quickly to adverse conditions (Pedone and Fagiolini,
2020; Radwan et al., 2020), locally self-organize in road
platoons to optimize performance (cf. Morbidi et al. (2013);
Besselink and Johansson (2015) and the pilot projects
SARTRE (Solyom and Coelingh, 2013) and COMPANION
(Eilers et al., 2015)), and, most crucially, they are supposed
to obey a shared cooperation protocol entailed by the
common traffic rules. Other examples are forklifts and
similar robots used for logistics in automated warehouses,
which obey a set of coordination rules to reach their des-
tinations and avoid collisions. Yet, many more examples of
open, heterogeneous, reconfigurable, and competing au-
tonomous systems can be expected soon.

Unfortunately, greater flexibility of interactions allowed
in a socially organized robotic system moving in a shared
physical environment goes hand in hand with new, stealthier
types of threats. In a renowned experiment conducted in
2016, the navigation subsystem of a car connected to the
Internet was remotely hijacked to take full control of the
vehicle (Greenberg, 2016); in a system as large as a social
set of robots cooperating on the basis of rules and without a
centralized controller, malfunctioning of a single individual,
due to spontaneous failure or tampering, can produce effects
that amplify in the society (Bossens et al., 2022). Relying on
the assumption that all robots belonging to the society are
systems robust to failures or attacks by design is unrealistic.
In the absence of a central monitoring system, it is necessary
to provide online misbehavior detection mechanisms to face

these threats in a distributed way (Fagiolini and Bicchi,
2013; Gupta et al., 2006; Pasqualetti et al., 2013). To this
end, it is advocated that robots monitor one another and try
to determine whether or not their neighbors, with whom
they interact, follow the social rules. The challenge is to
cope with partial information about each robot, due to the
limited visibility of on-board sensors, and misbehavior of
any component of a neighboring robot, from its sensors to
software and actuators. In addition, detecting misbehavior
may be too difficult for a single robot, while sufficient clues
for effective detection can only be found through infor-
mation exchange.

In this context, traditional approaches for fault detection
and diagnosis cannot be directly applied for many reasons.
Firstly, most of the literature to date focuses on single robot
scenarios (Pettersson, 2005; Zhuo-Hua et al., 2005). Only
recently, some studies have examined fault detection in the
more challenging case of multiple distributed robots
(Khalastchi and Kalech, 2018, 2019). Secondly, robots have
varying degrees of autonomy, operate in different and
more dynamic physical environments, and thus may ex-
perience a broader spectrum of failures, including those
induced by an arbitrarily intelligent or byzantine actor
(Ashkenazi et al., 2023; Pasqualetti et al., 2012) that can
tamper with the robot architecture at any level. The first
relevant results, using the geometric approach, that ad-
dressed the problem for linear dynamical systems are the
seminal works by Pasqualetti et al. (2012, 2013); the ideas
have been partially extended for linear switching systems
more recently (Duz et al., 2018; Zattoni et al., 2017). The
resilience of multi-robot systems to communication
failures has been addressed successively in deterministic
contexts (Fagiolini et al., 2015; Kaur et al., 2021; Strobel
et al., 2018) and, very recently, with probabilistic robot
interaction, exploiting the control-theoretic notion of left-
invertibility (Wehbe andWilliams, 2021a, 2021b). A data-
driven approach for detecting anomalies through statis-
tical classifiers was proposed in the early work by Lau
et al. (2011). Recently, an approach based on the adaptive
immune system has been applied to robot swarms, which
is capable of distinguishing abnormal behavior from the
most frequent ones (Tarapore et al., 2019). Still, the lit-
erature lacks a general approach to codifying social rules
in the components of a social robot’s model and a systematic
way to design, given the rules of a society, local processes for
monitoring and collecting evidence of cooperativeness or
non-cooperativeness from each robot and for social agree-
ment; the latter is crucial to trigger, if necessary, any
counteraction in response to the detection of a robot not
following the rules, seen as an intruder of the society.

This paper addresses the problem of distributed misbe-
havior detection in systems where cooperation between ro-
bots is described by a set of social rules and robots themselves
can be heterogeneous in their dynamics, actuators, and
controllers. A new solution is proposed consisting of a
distributed mechanism for monitoring and agreement, which
applies to a class of socially organized autonomous systems

2146 The International Journal of Robotics Research 43(14)

where the behavior of each robot depends, in a general way,
on the presence or absence of other nearby robots. After
introducing a formal hybrid modeling framework to describe
these systems, the paper presents the theoretical results that
enable the construction of a local monitor, an essential ele-
ment of the proposed solution, which is a module running on
each robot and trying to determine whether or not any
neighboring robot follows the social rules. Once the behavior
of a given robot is measured, the challenge of each monitor is
to reconstruct, by whatever visibility is available, the possible
inputs that may have generated this behavior in accordance
with the social rules. Through this “inversion” of the hybrid
model, the local monitor reconstructs a set-valued estimate of
the occupancy of all regions near the robot. Then, each
monitor becomes a node of a set-valued consensus algorithm
and shares the estimate with other nearby monitors, in order
to obtain a socially agreed view of the occupancy, discover
any mismatched behavior of the robot, and activate any
countermeasures if necessary.

An appealing feature of the solution is that the local
monitor modules are obtained from software components
already present in the architecture of each agent, and thus,
its complexity can be determined. In addition, a software
tool to automatically generate the code of local monitors and
consensus nodes for all agents is provided. The approach
validity is successfully demonstrated in various systems,
including self-driving cars, autonomous forklifts, and dis-
tributed power generation plants. Simulations have been
developed for all cases, and an experimental im-
plementation has been done on real forklifts.

The document is organized as follows. Section 2 de-
scribes the state of the art and outlines the contributions of
the present work. Section 3 formally presents the coop-
eration protocol model for socially organized robots,
Section 4 explains the challenges and derives the local
monitor components, and Section 5 focuses on the social
agreement and describes the consensus node. The fol-
lowing two sections, 6 and 7, detail the application of the
proposed method to three case studies. Section 8 sum-
marizes the work achievements and contains a discussion
on various technological aspects and observations. Five
appendices complement the document as follows:
Appendix A describes multimedia extensions. Appendix B
demonstrates the event estimation map with incomplete
and time-varying visibility. Appendix C illustrates the
finite-time convergence of the set-valued consensus al-
gorithm. Appendix D is a brief guide to the software tool.
Finally, Appendix E summarized the key symbols used for
the main objects involved in the work.

2. Related work and novelty

2.1. State of the art

Fault detection and diagnosis for robotics is a relatively new
topic. Since robots are physical systems with varying de-
grees of autonomy operating in diverse and dynamic

physical environments, the detection of anomalies or faults
poses constraints that challenge traditional approaches.
Most literature to date relies upon traditional approaches to
fault detection and focuses on single robot scenarios (cf.,
e.g., Pettersson (2005); Zhuo-Hua et al. (2005)). In a recent
survey, Khalastchi and Kalech (2019, 2018) looked at the
distributed multi-robot domain and provided an overview of
the types of faults and their impact on these systems. After
outlining the requirements and challenges involved, the
survey indicates qualitatively which current approaches can
be used and lists some existing control schemes
(Christensen et al., 2009; Li and Parker, 2007), all designed
for specific contexts, that guarantee a certain level of ro-
bustness. Along the line, Parker (1998) has considered more
general scenarios and rooted the main ideas towards the
development of fully distributed, behavior-based architec-
tures for the fault-tolerant cooperative control of robot
teams. Stavrou et al. (2016) have described a learning-based
technique that adapts a set of parameters after the robot is
deployed in the target environment but still applies to a
single-robot system.

General misbehavior detection, which includes simple
failures, must address a broader spectrum of anomalies,
including those induced by an arbitrarily intelligent or
Byzantine actor that can tamper with the robot’s architecture
at both logical and physical levels. Specifically, Bossens
et al. (2022) emphasized that robot teams used for long-term
deployment must be resilient to disruptions, whether due to
sensor and motor failures, weather conditions, or even
adversary cyber attacks. Some disruptions can be antici-
pated during the design phase, which is the driving idea of
the work by Zheng et al. (2016), which successfully pro-
posed a multi-layered co-design approach for securing
cyber-physical systems, thus enabling the implementation
of resilient-by-design architectures; the framework is valid
for linear systems and combines control-theoretic methods
at the functional layer of the cyber-physical system with
cybersecurity techniques at the embedded platform layer. In
addition, Zhou and Tokekar (2021) outlined that current
strategies for coordination and planning of multi-robots are
vulnerable to adversarial attacks, revealing that the devel-
opment of schemes resilient to such attacks and robust to
uncertainty is still an open research area. It is highlighted
again by Bossens et al. (2022) that when the system be-
comes large and complex interactions are present, anom-
alies can only be detected through local measurements of
each team member but still need a team-wide view before
any counteraction is taken.

A variety of works has focused on fault tolerance or,
more generally, on the resilience of multiple robots to
communication failures. In this regard, Pasqualetti et al.
(2012, 2013) proposed in their seminal work a new tech-
nique based on the geometric approach that applies to linear
dynamic systems. Later on, Duz et al. (2018) partially
extended the results to detect stealthy attacks in switching
linear systems, and Zattoni et al. (2017) proposed a tech-
nique with a prospective application to the field using the

Fagiolini et al. 2147

notion of controlled invariance. Other works have tackled
the problem in deterministic contexts (Ashkenazi et al.,
2023; Fagiolini et al., 2015; Kaur et al., 2021), and only
recently for systems with probabilistic robot interaction
using the notion of left invertibility (Wehbe and Williams,
2021a, 2021b). In parallel, Strobel et al. (2018) proposed
ensuring security through blockchain technology to tolerate
the sharing of erroneous information by Byzantine robots.
Lee and Hauert (2023) have used sparsity in robot swarms
to establish trustworthiness in real implementations.
Leaderless consensus in teams with linear dynamics has
been achieved through the work by Zeng and Chow (2014),
which proposed a resilient distributed control law using
rollback and excitation recovery.

Few works have focused explicitly on motion misbe-
havior in multi-robot systems, or, if they do, they assume
simple models and hypotheses. To begin with, Ashkenazi
et al. (2023) examine motion misbehavior in robot swarms,
where each robot is assumed to follow a motion policy that
makes it move on a grid; it can cope with benign and
Byzantine malfunctions, the former of which are tolerated
through a forgive-and-forget strategy. Trinh and Nguyen
(2023) have proposed a fault-tolerant model predictive
controller to achieve leader-following formation with uni-
cycle robots. In contrast, Guo et al. (2018) have presented a
method in which robot models can be nonlinear and consist
of various components that can be fault, but interaction with
neighboring robots is not represented. A promising solution
has been developed by Ferraro and Scordamaglia (2023), in
which a set-valued approach is used to determine faults in a
remotely controlled vehicle; this involves generating a
feasible trajectory for the robot subject to unknown but
limited external disturbances. Yet, so far, the method can
only recover a single optimal trajectory and applies to the
context of a single robot without general interaction with the
environment or other robots. Tarapore et al. (2015, 2019)
have developed a noteworthy approach based on the
adaptive immune system and applied it to robot swarms.
The method does not require knowledge of normal behavior
patterns in advance. Instead, it uses the ability to tolerate
certain behavior deviations to recognize frequent behaviors
as normal and rare ones as abnormal and, thus, possibly
faulty. Although this feature gives the method considerable
flexibility, it also makes it unsuitable, at least in the current
form, in systems where social rules specify allowed be-
haviors, and it is not true that a dynamic pattern executed by
many agents is correct. Furthermore, the method assumes a
one-to-one mapping between the presence/absence of other
neighboring robots and the type of behavior a robot per-
forms, whereas, in a socially organized system, robot in-
teraction may involve general binary conditions, including
combinations of logical negation, product, and sum,
altogether.

Furthermore, an important property often exploited to
detect faults or spurious inputs is the invertibility of a model
with respect to a set of inputs (Millérioux and Daafouz,
2007; Sain andMassey, 2002; Vu and Liberzon, 2008). This

property ensures that such inputs can be reconstructed by
using only output measurement. Methods for explicit
construction of input-state observers have been proposed for
linear models (cf., e.g., Sundaram and Hadjicostis (2008))
and even used in robotics and automotive for various
purposes (Pedone and Fagiolini, 2020; Trumić et al., 2022).
In the present context, a robot monitoring another member
of the society generally has to estimate signals generated by
the presence/absence of other neighboring robots that are
outside its sensing range. Due to the nature of social rules,
however, scenarios in which two neighboring robots have
different positions but are in the same area may not be
distinguishable. Therefore, it is more plausible that the
inversion maps single-point outputs to continuous sets
representing areas where the existence or absence of a
neighboring robot is required. In this regard, solutions for
input and state reconstruction via set-valued observers
(Doyen and Rapaport, 2001; Lin et al., 2003; Monteriu
et al., 2007; Shamma and Tu, 1999; Xu et al., 2017) do not
apply because they assume linear or input-affine dynamics.
In contrast, the aim here is to address a class of hybrid
systems, with nonlinear jump conditions and dynamics, that
is sufficiently large to accommodate the implementation of
social rules. The first two methods return the most probable
value of a single state at any given time, whereas dealing
with general misbehavior, including attacks, requires the
estimation of complete occupancy maps of an observed
robot’s neighborhood. Also, they require persistent exci-
tation and active disturbance rejection, which implies a
modification of the given social rules. Yet, they are very
effective in specific cases involving linear models so that
they could complement the tools of the architecture pre-
sented here.

As will be shown later, the model of each social robot
comprises a finite state machine, or automaton, whose
temporal evolution is event-driven. Events are related to the
occurrence of appropriate general conditions about the
presence/absence of neighboring robots. Reconstruction of
events from partial knowledge of a monitoring robot is,
hence, an essential feature to be achieved. In this regard,
observability and diagnosability for event-driven systems
have been studied by, e.g., Cassandras and Lafortune
(2006), Yoo and Lafortune (2002), Özveren and Willsky
(1992), and Ramadge and Wonham (1989, 1987). Overall,
the social robot model is essentially hybrid (Goebel et al.,
2009), in that it also includes a time-driven dynamic that
describes the physical behavior of the robot. Balluchi et al.
(2002), Zad et al. (2003), and Fourlas et al. (2002) have
studied the two properties mentioned above for hybrid
models in the linear or input-affine settings. Yet, it should be
noted that the number of inputs to each robot’s hybrid model
changes over time, as does the number of neighboring
robots, and that the capacity of a monitoring robot to detect
the occurrence of specific events changes also with its in-
stantaneous visibility. The time-varying topology of a ro-
bot’s interaction and the partial event visibility of a
monitoring robot, together with the hybrid and possibly

2148 The International Journal of Robotics Research 43(14)

nonlinear nature of the model, prevent the use of standard
tools for observability, invertibility, and diagnosability;
these tools assume instead constant visibility and interaction
and that this information is fully known a priori.

A final point concerns the establishment of a socially
accepted global view on the cooperativeness of a given
robot. In distributed systems, consensus algorithms are
often used (Jadbabaie et al., 2003; Olfati-Saber et al.,
2007). Such algorithms have linear dynamics and allow
participating agents to agree on the value of a physical
quantity described by a real number or vector. As noted
earlier, when attempting to invert the model of a social
robot and reconstruct its inputs, one obtains continuous
sets representing areas where neighboring robots should or
should not be. Specifically, local monitors and consensus
nodes, described below, must attempt to reconstruct and
ultimately refine estimates of unknown inputs that explain
the behavior of a commonly observed agent; the results of
this process are continuous points and sets that describe
regions where the presence/absence of a neighbor is
necessary to prove the cooperativeness of the observed
robot, which makes linear consensus strategies inappli-
cable here.

2.2. Contribution

As pointed out above, the scientific literature lacks some
essential elements that would enable the practical reali-
zation of a robot society. In this context, this paper con-
tributes to the state of the art in a number of ways, as
described below.

Firstly, a general approach to codifying social rules and
incorporating them into the components of a social robot
model is currently missing. In this regard, the paper pro-
vides a formal framework for describing a class of socially
organized autonomous systems in which the behavior of
each robot is governed by a set of rules that depend on the
presence or absence of other neighboring robots; the notion
of neighborhood is defined through proximity maps that are
functions of the states and intentions of any interacting
robots. Accordingly, a cooperative robot is described by a
model that includes its physical time-driven dynamics, low-
level controllers that allow the execution of specific ma-
neuvers, the event-driven dynamics of social interaction, the
perception of the environment and nearby robots, the en-
coding of inputs into events, etc.

Secondly, while many approaches for distributed mis-
behavior detection in discrete-event systems, hybrid linear
systems, and some classes of switching linear systems are
available, a general methodology applying to a class of
nonlinear multi-robot systems with social interaction is
absent. In this respect, the paper proposes a systematic way
to design, given the rules of the society, local processes for
monitoring and collecting evidence of cooperativeness or
non-cooperativeness from each robot and for later reaching
social agreement. Specifically, social consensus is enabled

through a distributed algorithm run by cooperating moni-
tors, whose construction exploits the results recently de-
veloped in the field of set-valued Boolean iterative maps
(Fagiolini et al., 2015).

An appealing feature of local monitors is that their
construction is based on models and software components
already present in the architecture of each robot. More
precisely, the equations that describe the robot’s physical
dynamics, as well as the low-level control software that
sends signals to the actuators, the one that updates the
automaton and the one that encodes the binary conditions
that indicate the occurrence of events, are appropriately
exploited as black boxes, to generate predictor/corrector
components automatically. This feature implies that their
complexity can be determined, and their execution is typ-
ically already feasible on the robots.

A noteworthy theoretical result regards the construction
of a nondeterministic observer of the discrete state of the
system. Such observer is obtained through a suitable fac-
torization of the event detection conditions, which takes into
account the current partial visibility of the monitoring robot.
It extends existing solutions (Cassandras and Lafortune,
2006) insofar as it shows: (1) how, given a discrete-event
model, a nondeterministic observer can be derived even
with partial and time-varying visibility of events; (2) the
absence of the need to explicitly construct the observer, as
calculations can be performed through a black box exe-
cution of the robot’s automaton.

Lastly, the paper provides a software tool to automati-
cally generate the code for local monitors and consensus
nodes for all robots. The validity of the approach is suc-
cessfully demonstrated in various systems, including self-
driving cars, autonomous forklifts, and distributed power
generation plants. The paper illustrates the proposed
methodology through simulations for all case studies and an
experimental implementation on industrial forklifts.

2.3. Nomenclature

The section ends by defining the nomenclature used in the
text. Firstly, given a set A, the following notation is used:
Pow(A) denotes the power set of A, i.e., the set of all
possible subsets (including the empty set and the set A itself)
that can be constructed from elements of A; 1A(x) denotes
the Indicator function of A returning 1 if, and only if, x 2 A;
if the set A4 X × Y, where X and Y are two sets, ProjX(A) is
the projection or restriction of A to the set X, i.e., ProjX(A) =
{x | (x, y) 2 A, with x 2 X and y 2 Y}; if a4 A, a ¼ A ∖ a is
the set complement of a for A.

Moreover, given a vector space Q, TanðQÞ is the space
tangent toQ and F½t1, t2�ðQÞ is the space of functions defined
from the time interval [t1, t2] to Q.

Furthermore, B¼deff0, 1g is the binary domain, Å, Ä, and
¬ are the logical sum (or), product (and) and negation (not),
respectively; also, given a suitable domain set X, a logical-
valued function b :X →B, associated with a specific

Fagiolini et al. 2149

condition on X, is said to be active if b returns 1 if, and only
if, such condition is met.

In addition, given a signal a(τ), where τ is a continuous
time, ~aðt0, tÞ denotes the history of a(τ) during the time
interval [t0, t), i.e., a buffer memorizing the evolution of the
signal during such interval; when the first argument is
understood, the history is shortened as ~aðtÞ. Also, a[k]
denotes the signal a(τ) sampled at discrete times t = tk, i.e.,
a[k] = a(tk).

Finally, given a constant ϵ > 0, two signals, a(t) and b(t),
are ϵ-similar in a time period T ¼ ½t1, t2Þ, if ka(t)� b(t)k ≤ ϵ
for all t 2T , where k�k is a norm over the signal domain.

3. Protocols for socially organized agents

Consider n robotic agents, A1,…,An, sharing a state-space
or environmentQ. A distributed cooperation protocol P is a
formal description of the constitutive elements of each
agent, specifying their perception, dynamics and control,
actuation, and the rules by which these elements are in-
terconnected so as to determine their behavior and inter-
action with neighbors. Socially organized agents are agents
sharing a cooperation protocol P. The key symbols of the
protocol are summarized in Table 7 in Appendix E.

3.1. Explanation and intuitive introduction

Intuitively, one can introduce P by referring, e.g., to a
system of self-driving or human-driven vehicles trav-
eling on a motorway. In this context, the goal of each
motorcycle, car, or truck Ai on the road is to reach its
destination while avoiding collisions, which is supposed
to be achieved cooperatively by following a set of traffic
rules. By looking from a top-down view, rules are based
on safety- and performance-critical events and specify a
number of maneuvers. Events affecting a vehicle Ai are,
e.g., the presence of a slow car in the front lane or a fast
motorcycle approaching from the next lane; they are
triggered by binary conditions depending on the current
state of Ai and those of the vehicles nearby. To perceive
the presence or absence of such other vehicles and map
out the road ahead, each Ai has cameras, lidars, ultra-
sonic detectors, and other sensors allowing it to see or
measure the states of other neighboring vehicles within a
visibility region; this is part of the environment that, at
any current time, is not hidden by any vehicles and that is
within a maximum distance from Ai. A subset of the
visibility region contains the information that directly
affects the behavior of Ai and represents the instanta-
neous proximity space or neighborhood of the vehicle;
correspondingly, all nearby vehicles affecting the be-
havior of Ai are its current neighbors. In addition, the
maneuvers that are accepted by a traffic protocol are, e.g.,
overtaking a preceding vehicle, slowing down, moving
to the next free lane, or simply continuing fast along the
current lane, are characterized by a specific type of
trajectory that Ai is required to track. Each time an event

is detected, vehicle Ai must assess whether the current
maneuver should be updated and, consequently, the type
of trajectory being tracked to be changed. The correct
execution of each maneuver is ensured by an onboard
controller (either automatic or human) and an underlying
actuation system, which implements a feedback (and
possibly also feedforward) stabilizing control action
through the steering and pedal/brake systems. The
control action applied at any time depends on the cur-
rent maneuver, as well as the specific mechanical
structure, size, and inertia of the ith vehicle, in a word, its
physical dynamics. All these elements ultimately de-
termine the temporal evolution of the ith vehicle state or
behavior. Such a state is formed of the linear and angular
positions and the corresponding speeds, of Ai and is
defined over the domain Q of all possible vehicle states
on the road.

More in detail, from a bottom-up view, the continuous
state of each Ai is a vector qi 2Q, describing the current
configuration of the vehicle along the motorway and
evolving based on a time-driven dynamics map fi; its dis-
crete state is a scalar σi 2 Σi, describing the vehicle’s current
maneuver and being updated through an event-driven au-
tomatonmap δi; the set of all maneuvers that are admitted by
the traffic protocol are collected in a finite discrete state set
Σi. The region of Q that is reachable by the lidars and
cameras of Ai is represented by a visibility map Vi; the
subset of Vi representing the proximity space or neigh-
borhood N i of the ith vehicle is formed of the union of
distinct subregions or topologies, among which: κi are
described by maps ηi,j(qi) denoting regions close to and
moving with the vehicle; other hi are described by maps η*

i, j
denoting constant regions used to delimit the physical envi-
ronment Q or describe boundary values for each qi. Ex-
amples of topologies moving with the ith vehicle are the
front, rear, and the two lateral areas with respect to the
vehicle configuration qi; those that are constant include the
left and right roadside curbs. Moving topologies concur to
defining the ith current neighborhood as N i ¼ [κi

j¼1ηi, jðqiÞ,
which let us also define the ith neighbor set
Ni ¼ lj ql 2N if g and, then, input set Ii = {ql|l2 Ni} as
the set of indices and set of configurations, respectively, of
all neighboring vehicles affectingAi. All such vehicles also
represent the neighbors of Ai.

The presence of a nearby vehicle Al in each (i,j)th to-
pology as well as the proximity ofAi to any constant region,
are mapped into binary values si,j via an encodermap si; the
activation or non-activation of each si,j are used to encode
the detection conditions of events ei,j 2 Ei, where Ei is an
alphabet of events, that are relevant for the traffic protocol
P. Specifically, the calculation of every event ei,j is codified
as a binary product of a subset of the encoder map com-
ponents si,j, either taken with their positive or nega-
tive values; this is specified by two index sets,

γi, j, γ
*
i, j4f1,…, κi þ hig indicating which components are

to be multiplied with each other and whether their positive

2150 The International Journal of Robotics Research 43(14)

or negative values are relevant. As an example, the event
that triggers a change of maneuver/trajectory that forces the
ith vehicle to overtake a slower one Al in the front is de-
tected by the simultaneous presence of the slower vehicle in
the front lane area and the absence of other vehicles in the
next lane area. All such index sets are collected in an en-
coder index set Γi. Finally, depending on the maneuver/
trajectory to be executed, each vehicle has an onboard
controller that continuously generates appropriate steering
and pedal/brake commands; precisely, this is obtained by
the ith decoder map ui 2U i, with U i the set of permissible
control actions, which directs the evolution of the vehicle’s
dynamics fi. The overall behavior of the ith vehicle is
mathematically described by the hybrid model Hi that will
be described formally below, the components of which are
illustrated in Figure 1 and can be implemented in the
simulator described in Appendix D.

3.2. Formal definition

One can now turn the attention to the case of n generic
agents sharing an environment Q. Letting the continuous
state of each Ai be qi 2Q and its discrete state be σi, P is
formally defined as follows:

Definition 1. A distributed cooperation protocol P
consists in the specification, for each Ai, of an octuple

P i :¼ fTi,Vi,Ei,Γi,Σi, δi, ui, fig,

whose first element is:

· Ti ¼ fηi, 1,…, ηi, κi, η
*
i, 1,…, η*i, hig is a topology set, with

each ηi, j :Q→ PowðQÞ describing a nearby region ofQ
where the presence or absence of other agents affectsAi,

and with each η*i, j 2 PowðQÞ describing a region in-

dependent of qi and that represents a boundary of Q.

This first object is essential to define a few further
concepts: the ith proximity space or neighborhood
N i ¼ [κi

j¼1ηi, jðqiÞ, neighbor setNi ¼ fljql2N ig, and input

set Ii = {ql|l2 Ni}. Accordingly, an agentAl is a neighbor
ofAi (orAi-neighbor for short) ifl2 Ni; ni = card (Ii) is the
number of neighbors of Ai. Also, one can introduce the ith
encoder map as si :Q ×Qni →B

κiþhi , whose jth component
si,j is active, for j ≤ κi, when any neighbor Al is in the jth
topology ηi,j, and, for j > κi, when the ith state is in the jth
topology η*i, j�κi

; in formula, this is obtained as

si, j :Q×Qni →B

qi, Iið Þ1
(Åql2Ii1ηi, j qið Þ qlð Þ j ≤ κi:

1η*
i, j�κi

j> κi

(1)

The remaining seven elements of Pi represent the fol-
lowing further objects:

· Vi :Qn →PowðQÞ is a visibility map, describing the
region of Q that can be seen by the sensors onboard Ai

and where the state of any present agent can be mea-
sured; Vi is assumed to be a superset of N i, i.e.,
N i4Viðq1,…, qnÞ, which implies that the ith neigh-
borhood is entirely known to Ai through its sensors;

· Ei ¼ fei, 1,…, ei, νig is a finite alphabet of events;

· Γi ¼ fγi, 1, γ*i, 1,…, γi, νi, γ
*
i, νig is an encoder index set,

with each pair ðγi, j, γ*i, jÞ4f1,…, κi þ hig2 describing

how the (i, j)th event ei,j is recognized, by using the ith
encoder map si, via the detector map

ei :B
κiþhi →Pow Eið Þ

si1fei, j 2Eij Äl2γi, j si,l
� �

Ä

Ä Ä
l2γ*

i, j
¬si,l

� ��
;

(2)

· Σi ¼ fσi, 1,…, σi, rig is a finite discrete state set;
· δi: Σi × Pow(Ei) → Σi is a deterministic automaton

describing, for each ith pair of discrete state σi and
detected event set ei, the next discrete state σ

0

i 2Σi;
· ui :Q× Σi ×Qni →U i is a decoder map, describing, for

each triple of state qi, discrete state σi, and input set Ii,
the control action to be applied;

· fi :Q×U i → TanðQÞ is a dynamics map, where U i is the
set of admissible inputs and TanðQÞ is the space tangent
toQ, describing, for each ith pair of state qi and input ui,
the instantaneous motion direction _qi 2 TanðQÞ. A

Note that index i in ηi,j indicates that eachAi may have a
different jth topology. The argument of ηi,j (qi) is redundant,
yet it is kept to recall its dependency on the ith state. Note
also that the co-domain of ei is Pow(Ei) to account for the
general case when events ei,j can simultaneously occur.

3.3 Temporal behavior of a cooperative Ai

By using the elements of each Pi, the temporal behavior of
Ai can be described as follows. Let t ≥ 0 be the continuousFigure 1. Illustration of the model of a cooperative robot Ai.

Fagiolini et al. 2151

time and let t = tk, for k = 0, 1,/, be the kth instant at which
the ith detector map ei recognizes a new event. The ith
continuous state qi evolves, from an initial value q0i 2Q,
according to the ODE

_qiðtÞ ¼ fiðqiðtÞ, uiðtÞÞ, with qið0Þ ¼ q0i , (3)

while the ith discrete state σi is updated, from an initial value
σ0i 2Σi, according to the iterative rule

σi½k þ 1� ¼ δiðσi½k�, ei½k þ 1�Þ, with σi½0� ¼ σ0i : (4)

Based on the latest updated discrete state σ[k] and the
current input set Ii(t), the decoder map applies the control
action ui(t) = ui (qi(t), σi [k], Ii(t)), which, plugged into (3),
yields the controlled dynamics map

_qi tð Þ ¼ fi qi tð Þ, ui qi tð Þ, σi k½ �, Ii tð Þð Þð Þ ¼
¼ f *i qi tð Þ, σi k½ �, Ii tð Þð Þ;

(5)

Similarly, based on the current ith state qi(t) and input set
Ii(t), the encoder map returns the vector si(t) = si (qi(t), Ii(t)),
which, inserted in the detector map, yields ei(t) = ei (si(t)),
which in turn is plugged into (4), thus giving the closed-loop
automaton map

σi k þ 1½ � ¼ δi σi k½ �, ei si qi tð Þ, Ii tð Þð Þð Þð Þ ¼

¼ δi
* qi tð Þ, σi k½ �, Ii tð Þð Þ:

Introducing the ith hybrid dynamic map

Hi :Q ×Σi ×Qni → Pow Qð Þ× Σi

qi, σi, Iið Þ1
fi
* qi, σi, Iið Þ

δ*i qi, σi, Iið Þ

 !
,

the ith complete state represented by the pair ðqi, σiÞ 2
Q×Σi evolves according to the dynamic model�

_qiðtÞ
σi½k þ 1�

�
¼ HiðqiðtÞ, σi½k�, IiðtÞÞ, (6)

with qið0Þ ¼ q0i and σi½0� ¼ σ0i .
Having derived the above model, for a given history

~I ið0, tÞ of the input set Ii, one can now define the ith be-
havior as the solution ~qið0, tÞ ¼ fHi

ðq0i , σ0i ,~I ið0, tÞÞ, for t ≥
0, of (6). Note that ~I ið0, tÞ represents an input signal for the
above solution. This finally lets us distinguish cooperative
from uncooperative agents as follows:

Definition 2. Exactly cooperative and uncooperative
agents. Ai is exactly cooperative under Pi if the ith
history ~qið0, tÞ solves (6) for some initial state values, q0i
and σ0i , and some input set history ~I ið0, tÞ. Otherwise,Ai

is uncooperative.
In the above sense, an agentAi that is not following Pi is

considered an intruder of the robot society.

4. Protocols for the design of local monitors

This section focuses on how an agent Ah is enabled to
understand whether another Ai that is within its visibility
scope, i.e., qi(t) 2 Vh for some interval of t, is following the
associated cooperation model Pi. Referring to the motor-
way example, this amounts to understanding how to enable
a vehicleAi to determine whether one of the vehicles that is
within visibility range is following the driving rules. For the
sake of implementability, to achieve its goal, suppose that
Ah measures and collects the history of the actual behavior
ofAi over consecutive time slots, at the end of which a local
monitor process Mh is executed to decide whether Ai is
cooperative or not. The challenges faced by each Mh and
the proposed solution are described below. The key symbols
used are summarized in Table 8 in Appendix E.

4.1. Brief introduction of the local monitor

The implementation of a local monitorMh must cope with
having partial knowledge of the input set Ii of the agent
being evaluated. Indeed, while one can assume that Ai has
full access to its own neighborhoodN i through its sensors,
the same hypothesis cannot be made regarding the mon-
itor’s sensors since, in general, one has N i4Vh. In the
motorway example, some of the vehicles that are nearbyAi

may be covered by other vehicles from the position of Ah

or may be out of reach of its sensors. The information
available for Mh is, in fact, the ith partial input set Ihi ¼
Ii \Vh only.

Technically speaking, whenever the whole input set Ii is
available during any time slot [0, Δ], a monitor Mh can
compute the unique cooperative behavior of Ai via a
forward simulation of model Hi, initialized with the
previously reconstructed state, and compare such a be-
havior with the history of the actually measured one,
~qmeas
i ð0,ΔÞ; if the two signals match exactly, Mh is able to

conclude that Mh is executing a trajectory conforming to
Pi and can classify the agent as certainly cooperative, or
otherwise as uncooperative. This direct solution only
applies if Ihi ¼ Ii, yet its strategy is basic to obtain a
generalized solution that is valid also in the more chal-
lenging general case. Towards this goal, the following
definition can be given, introducing a strict and relaxed
notion of behavior explanation:

Definition 3. Behavior explanations and ϵ-similar be-
havior explanations. A set I * 2 PowðQniÞ is said an
explanation of a behavior qmeas

i ðtÞ for t 2 [0, Δ] if the

history ~I
*ð0,ΔÞ solves (6), for some σ 2Σi, i.e.,

~qmeas
i ð0,ΔÞ ¼ fHi

ðqmeas
i ð0Þ, σ,~I *ð0,ΔÞÞ. Given a toler-

ance ϵ > 0, an explanation is ϵ-similar to ~qmeas
i ð0,ΔÞ if

the signals fHi
ðqmeas

i ð0Þ, σ,~I *ð0,ΔÞÞ and ~qmeas
i ð0,ΔÞ

are ϵ-similar. Explanations with initial conditions q2Q

2152 The International Journal of Robotics Research 43(14)

and Σ4Σi are explanations where qmeas
i ð0Þ ¼ q and for

some σ 2Σ.
Intuitively speaking, in the case of a partial view, a

monitor Mh can try to find the set bIhi of all possible input
sets that are supersets of Ihi and explain the ith measured
behavior. Precisely, one has to find the setbIhi ¼ fbIhi, 1,bIhi, 2,/g such that each bIhi,l2 PowðQniÞ satisfies
Ihi 4bIhi,l and explains ~qmeas

i ð0,ΔÞ. Note that bIhi should be
exhaustive, i.e., include all possible explanations, and its

elements be the smallest ones, that is, eachbIhi,lbe of minimal
cardinality and measure. In the motorway example, a
monitorMh onboard the hth vehicle must try to reconstruct

the smallest yet exhaustive set bIhi of all possible input setsbIhi,l, comprising the configurations of Ai-neighbors that are
visible fromMh or that lay in hidden areas out of Vh but that
are required to explain the measured behavior of Ai. As it

will be clarified later, each bIhi,l represents an estimated
occupancy map of the ith neighborhood, i.e., a map de-
scribing where all Ai-neighbors possibly lie within N i and
where they must not; this map includes single-point con-
tinuous states describing measured locations of neighbors as
well as continuous sets describing regions where the
presence/absence of one or more neighbors is inferred from
the behavior of Ai, yet their correctness needs to be
confirmed.

In this regard, by anticipating, for the sake of clarity, the
consensus protocol of the next section, more monitors can
attempt to classify Ai cooperatively by sharing locally
estimated occupancy maps. A region in one of these maps is
said to be confirmed if there exists at least one local monitor
that can directly verify the presence/absence of an
Ai-neighbor with its own sensors; accordingly, an occu-

pancy map bIhi is fully confirmed if all its regions are con-

firmed. As a special case, an occupancy map bIhi is fully
confirmed by a single monitorMh, ifMh has full visibility
on N i, since, if so, Ihi ¼ Ii. On the whole, as long as the setbIhi is not empty, Mh is able to conclude that Ai is possibly

cooperative. Whenever there is one confirmed estimate bIhi,l,
the local monitor Mh can conclude that Ai is certainly
cooperative. If no behavior explanation is found, i.e.,bIhi ¼ ∅, Ai is classified as uncooperative. Finally, it should
be noted that, ifAi is conforming to Pi, the real ith input set
Ii, which is unknown to monitor Mh, is included by defi-

nition in each estimated occupancy map bIhi , i.e., there al-

ways exists bIhi,l2bIhi satisfying Ii4bIhi,l. In addition, if Mh is
able to perform observations during consecutive time slots,
the reasoning described above can capitalize on the last
estimates of the continuous state and the set of discrete
states, say q2Q and σ 2Σi, respectively. Then, the search

for explanations can be narrowed to those that start with
initial conditions q and any discrete state in Σ.

A final aspect to take into account is the uncertainty
caused by the measurement noise of the monitor’s sensors,
whereby the measured continuous state, including Ai’s
behavior, may be slightly different from the actual states. An
indirect yet effective way to deal with it is to introduce a
mismatch tolerance ϵ > 0 and loosen the matching test
between the measured and any predicted behavior with a
check on whether the difference between their signals is, in
norm, within a tube of radius ϵ; this is accounted for by
searching for ϵ-similar explanations (Bressan and Piccoli,
2007). Another way of looking at it is that any accepted
behavior explanation is such that the history of the corre-
sponding predicted behavior lies within a tube built around
the solution of (6) with a radius of ϵ. In a sentence, the
classification strategy of a monitor Mh to dealing with
visibility uncertainty assumes that Ai is cooperative until
proven otherwise, and thus involves trying to find all
possible ϵ-similar explanations to the measured behavior.

4.2. Technical explanation of the local monitor

The ability of a monitorMh to classify the behavior ofAi,
in a certain or uncertain way, depends on several factors.
The first factor is the full or partial visibility of Mh over
the region of the ith neighborhood. IfAh has full visibility
on N i, Mh can directly assess, for each topology ηi,j, the
presence/absence of any Ai-neighbor, Am, and measure
their continuous state, qm; if this is true for all topologies,
the ith input set seen byMh equals the whole ith input set
ðIhi ¼ IiÞ. Conversely, when Ah has partial visibility on
any topology ηi,j, it can both happen that one or more
Ai-neighbors are hidden by other agents/obstacles or out
of reach of the hth sensors, or that no neighbor at all is, in
fact, present in the non-visible part, ηi,j (qi) \ Vh, of the (i,
j)th topology. In the latter case, part of the ith input set
may not be known to Mh and Ihi be a strict subset Ii; in
general, then it will hold Ihi 4Ii. The information con-
nected to this first reasoning is represented in the ith
topology check map vi that will be defined later. In ad-
dition, based on the available information,Mh can assess
the ith encoder map si restricted to the visible part of the
ith neighborhood, N i \Vh; in this way, it will obtain a
lower estimate of it. This second information is stored in a
known encoder map bsi, also defined later, whose jth
component bsi, j is such that bsi, jðqi, Ihi Þ ≤ si, jðqi, IiÞ because
Ihi 4Ii.

A second fundamental ability for the monitor is to predict
all possible cooperative behaviors of Ai that are compliant
with the partial input set Ihi by using the values of the known
encoder map bsi. This feature requires first evaluating the
superset of all events, ei,j, possibly affecting the behavior of
Ai and being recognized by the ith decoder map ei. An
event estimator map bei that always satisfies the condition

Fagiolini et al. 2153

eiðsiÞ4beiðbsi, viÞ is introduced for this purpose. The explicit
formula of bei is described later in Th. 1 and derived in
Appendix B. The logic behind its derivation is to try to
factorize the ith encoder map si in terms of the values of the
known encoder bsi, and the topology visibility check vi, thus
obtaining a visibility factorization of the encoder map
components si,j. Intuitively, this is based on the reasoning
related to the two following cases:

· An event occurring upon activation of the single jth
component of si. If monitor Mh has full visibility on ηi,j
(and hence vi,j = 1), the encoder and known encoder
maps have the same definitions, by which their values
are equal ðbsi, j ¼ si, jÞ and, hence, the occurrence of ei,j

coincides with the activation ofbsi, j; otherwise, ifMh has
partial view (vi,j = 0), two cases can happen: if the known
encoder bsi, j is already active, also si,j is active (since
Ihi 4Ii) and event ei,j has necessarily occurred; if not,
nothing can be said on the value of si,j as there may exist
one or more Ai-neighbors not visible from Mh. In the
latter, si,j is assumed conservatively as active and the
event ei,j as possibly occurred. Writing the truth table of
this logic explicitly yields the visibility factorization:
si, j ¼ bsi, jvi, j Å ¬ vi, k ;

· An event occurring upon non-activation of the single jth
component of si. In case of full visibility (vi,j = 1), it holds
¬si, j ¼ ¬bsi, j. In case of partial visibility (vi,j = 0), the
presence of one or more Ai-neighbors is sufficient to
exclude the occurrence of event ei,j; in contrast, the
absence ofAi-neighbors detected byMh, does not let to
exclude that si,j is active. The factorization here sim-
plifies to: si, j ¼ ¬bsi, j.
The general case is wholly derived in Appendix and is

obtained as a recursive iteration of the reasoning above. The
result is described in the following:

Theorem 1. Consider a detector map ei with associated
encoder map si as in (1). The smallest, i.e., minimum
cardinality, event estimator compatible with a known
encoder map bsi and a topology check map vi isbei :Bκiþhi ×Bκiþhi →Pow Eið Þ

bsi, við Þ1fei, j 2Ei

��� Ä
l2γ*i, j

¬bsi,l� �
Ä

Ä Äl2γi, j bsi,lvi,lÅ ¬vi,lð Þ
� ��

:

(7)

In a nutshell, the event estimator map bei embeds the
effect of visibility uncertainty in the event detection
process, so that a conservative calculation of all possible
outcomes of the detector map ei is obtained. It is worth
noting that, to get the best performance in the event es-
timation, the set returned by bei should have the smallest
cardinality, which in turn requires that the known encoder
map bsi is the largest lower estimate (so the closest from
below) of si.

Still in relation to the second skill, Mh must be able to
translate, a priori, the estimated events into expected co-
operative behaviors ~qprei ð0,ΔÞ. To this end, Mh can first
compute all possible successive discrete states, consider-
ing all transitions of the automaton map δi that may be
triggered; this information is stored in a nondeterministic
automaton map Δi that is automatically synthesized from
δi. These discrete states are then used to compute the set
~qprei ð0,ΔÞ of all predicted behaviors through the controlled

dynamics map f *i ; during this task, Mh may need to
represent possible hidden Ai-neighbors that lie in the re-
gion ηi,j (qi) \ Vh; this is done by introducing an extended

input set map bIhi ¼ fIhi,lglthat extends the known input set

Ihi with a set of discretized points in the hidden parts of
each topology; based on each extended input Ihi,l, the

corresponding behavior ~qi,lð0,ΔÞ is computed. Finally, as
soon as the measured behavior ~qmeas

i ð0,ΔÞ is available,Mh

can, a posteriori, try to match any predicted behavior in
~qprei ð0,ΔÞwith the real one. It is crucial, here, to introduce a
matching tolerance that takes into account the inaccuracy
of the hth sensors, discretization in representing hidden
agents in the ith neighborhood, and “small” yet acceptable
mismatch between the ith nominal model and the real
model ofAi. As mentioned above, a practical way to do so
is to use a mismatch tolerance parameter ϵ that is incor-
porated into the definition of a similarity check map)ϵ,
which is used when comparing any pair of actual and
expected behavior.

A third final skill is the ability of Mh to invert the
cooperative model Hi in order to retrieve, a posteriori,

information about the actual input set Ii4bIhi , the actual
events, and the occupancy of each (i, j)th topology. An
explicit inversion is computationally impractical given the
hybrid and nonlinear nature of Hi. Therefore, Mh needs to
build a bidirectional link between any predicted behavior
~qi,lð0,ΔÞ and the corresponding discrete state and extended

known inputbIhi,l. This information is stored in a forward link
tableLi, which will be defined later and which allowsMh to
map any matched behavior back to the triggering events. By
doing so, Mh can obtain an improved a-posteriori evalu-
ation of the encoder map si, through a refined encoder map
shi , which uses the inverse map Δ�1

i of the nondeterministic
automaton map Δi to extract the set of events that may have
caused the transition from two consecutive discrete states;
this, in turn, leads to estimating the occupancy of the first κi
topologies; this is described in an occupancy estimator map
ηhi . Also, this leads to enlarging the part of the ith visibility
region Vi known to Mh, which is obtained by a refined
visibility map Vh

i also defined later.

4.3. Formal derivation of the local monitor

Denoting by Ihi ¼ Ii\Vh the subset of the ith input set Ii that
is known to Mh, the construction of the local monitor

2154 The International Journal of Robotics Research 43(14)

requires the introduction of the following few new objects,
most of which derive directly from Pi:

· A topology checkmap vi :Q ×PowðQÞ→B
κi , whose jth

component is active if the jth topology of Ai is entirely
visible from Ah, i.e.,

vi, j :Q× Pow Qð Þ→B

qi,Vhð Þ1
�
1 if ηi, j qið Þ4Vh

0 otherwise
;

· A known encoder map bsi, whose jth entry is a lower
approximation of si,j based on Ihi , with bni ¼ cardðIhi Þ:

bsi, j :Q ×Qbni →B

qi, I
h
i

	

1Åqk2Ihi

1ηi, j qið Þ qkð Þ;

· A nondeterministic automaton map Δi describing, for
each estimated pair of discrete state set bσi and events bei,
the set σ

0
i of possible next discrete states; this is obtained

as:

Δi : Pow Σið Þ×Pow Eið Þ→ Pow Σið Þbσi,beið Þ1fσ 2Σij∃σ 2Σi, σ4bσij
δi σ,beið Þ ¼ σg;

Correspondingly, its inverse map, Δ�1
i , describing, for

each pair (σ, σ0) of discrete states, the set of events ei,j that
may cause the transition from σ to σ0 is also introduced; this
is obtained as:

Δ�1
i : Pow Σið Þ×Pow Σið Þ→ Pow Eið Þ

σ, σ0ð Þ1fe2Eij∃σ, σ0 2Σi,

σ4σ, σ04σ0, σ04Δi σ, eð Þg;

Note that σi2 Σi is the (unique) discrete state executed by
Ai at a given time, while bσi 2 PowðΣiÞ is used to build the
conservative estimate set σ

0
i including all possible discrete

states complying with the knowledge of the local monitor;

· An extended input set map bIhi generating, from the ith
known input set Ihi , a set of extended known inputs,

fbIhi,lgl, each including Ihi and other points in the un-

known neighborhood N i ∖Vh obtained via a dis-
cretization scheme.

Lastly, a few further operators need to be introduced:

· A forward link table Li that is a list of triples, each of
which includes a behavior defined over the interval [0,
Δ], a discrete state, and the related input set; this is
defined over the domain Di ¼ F½0,Δ�ðQÞ ×Σi × PowðQÞ;

· A similarity check map)ϵ that, given a forward link
table Li and a measured behavior ~qð0,ΔÞ, returns the
subset of the tuples with behaviors that are similar to the
measured one; this is obtained as

)ϵ : Pow Dið Þ ×F 0,Δ½ � Qð Þ→ Pow Dið Þ

Li, ~q 0,Δð Þð Þ1fL* ¼ ~q* 0,Δð Þ, σ*, I*
� �

4Lij

~q* 0,Δð Þ is ϵ� similar to ~q 0,Δð Þg;

· A refined encodermap shi returning the largest encoder map
estimate complying with a known encoder map s and a pair
(σ, σ0) of successive discrete state sets; this is obtained as:

shi :B
κiþhi ×Pow Eið Þ×Pow Eið Þ→ Pow B

κiþhi
	

bsi, σ, σ0ð Þ1fs2B
κiþhi js ≥bsi,

ei sð Þ4Δ�1
i σ, σ0ð Þg;

(8)

· An occupancy estimator map ηhi ¼ ðηhi, 1,…, ηhi, κiÞ,
where each map ηhi, j is a function that, given the jth

components, sj and sj, of known and refined encoder
maps, respectively, and the known input set Ihi , returns
points and continuous sets estimating the occupancy of
the (i, j)th topology; this is obtained as:

ηhi, j :B ×B ×Pow Qbni� �
→ Pow Qð Þ

sj, sj, Ihi
	

1

8><>:
Ihi, j,W

h
i, j

n o
if sj,

Ihi, j,W
h
i, j,W

h

i, j, s
jg if ¬sj,

n
(9)

where Ihi, j ¼ Ihi \ηi, jðqiÞ, Wh
i, j ¼ ηi, jðqiÞ\Vh, and

W
h
i, j ¼ ηi, jðqiÞ∖Vh are the portions of the (i, j)th topology that

are visible and non-visible toMh, respectively; note thatWh
i, j

is a region whereMh has direct visibility and thus can confirm
or exclude any assumptions about the presence or absence of
additional neighbors ofAi, information that will be used in the
consensus algorithm described in the next section;

· A refined visibilitymapVh
i ¼ ðVh

i, 1,…,Vh
h, κi

Þ, where each
mapVh

i, j describes the portion of the (i,j)th topologywhich

is eventually known toMh either through direct measures
or through inference from the behavior ofAi; given the jth
components, sj and sj, of known and refined encoder
maps, respectively, these are obtained as:

Vh
i, j :B×B→ Pow Qð Þ

sj, sjð Þ1
(
Wi, j if sj,

Wi, j [ηi, j qið Þ if ¬sj;

(10)

Fagiolini et al. 2155

· A classifier map Ci that, given a forward link table Li, a
measured behavior ~q, and the list {Vi,j} of visible por-
tions of each (i, j)th topology, returns the corresponding
classification decision; this is given by:

Ci :Di ×F 0,Δ½ � Qð Þ×Pow Qð Þ→ S1, S2, S3f g

Li, ~q, Wi, j

� �
j

� �
1

8><>:
S1 if L ≠∅, ∃ I i,l4Wi,

S2 if L ≠∅, " I i,l?Wi,

S3 if L ¼ ∅,

(11)

with S1 ¼ ‘certainly cooperative’, S2 ¼ ‘possibly cooper-
ative’, and S3 ¼ ‘uncooperative’, and with
L ¼ Li)ϵ~q ¼ f~qi,l, σi,l, I i,lgl, and Wi = [jWi,j.

Having introduced all required components, one can now
describe the operation of the hth monitor. For practical
implementability, the monitoring of Ai is organized as a
process that is run every Δ seconds. Let k 2N

þ
0 be the it-

eration step of the current execution, and let t 2 [0, Δ] be the
elapsed time since the start of that iteration. Suppose that
Mh measures, at every t, the actual state ofAi, say qmeas

i ðtÞ,
so that, at the end of every step, the history of the measured
behavior, ~qmeas

i ð0,ΔÞ, is available. Moreover, each kth step
comprises a prediction and an update/matching phase.
During the prediction phase, Mh computes the set of all
possible behaviors conforming to Pi based on the available
partial input set Ihi ; this is given by a set

~qprei ð0,ΔÞ :¼
n
~q pre
i, 1 ð0,ΔÞ, ~q

pre
i, 2 ð0,ΔÞ,/

o
, (12)

where each ~q pre
i,lð0,ΔÞ 2Q for all times. This is obtained by

evaluating the known encoder map bsi, which then allows
estimating all possible events through the event estimatorbei;
then, the history set ~qprei ð0,ΔÞ of all predicted behaviors are
computed via a forward simulation of the controlled dy-
namics set map Fi. The forward link table Li is also updated
during this stage. During the update/matching phase, Mh

compares the uniquemeasured behavior ~qmeas
i ð0,ΔÞ with all

predicted behaviors and drops out the ones that are not
ϵ-similar; this is obtained through the operation
Li½k�)ϵ~q

meas
i ð0,ΔÞ that returns the only links with matching

behaviors. Restricting the result to the set Σi also allows
updating the discrete state set.

Finally,Mh can determine an estimate of the occupancy
of each (i, j)th topology, for j ≤ κi, possibly including data on
the presence/absence of Ai-neighbor in each unknown part
ηi,j \ Vh; it can also extend its own visibility map Vh based on
information inferred via the behavior matching process. The
strategy behind these two operations is as follows. First,
each (i, j)th component of the encoder map si, for j ≤ κi, is
expanded as the binary sum of the known encoder map bsi, j
and the remaining unknown term, say pi,j; in formula, this is

si, jðqi, IiÞ ¼ bsi, j	qi, Ihi
Å pi, jðqi, IiÞ, (13)

where pi, jðqi, IiÞ ¼ Åql2Ii∖Vh1ηi, jðqiÞðqlÞ conveys information
on Ii \ Vh, whose value is to be estimated. To achieve so,
assume that bsi, j is a priori predicted, while the set shi, j is

computed a posteriori during the update phase. Now recall
that, by construction, bsi ≤ si and, for every s2 shi , s ≥bsi (see
the definition of shi in (8)), and also note that, if Ai is
cooperative, s ≥ si; this implies that bsi ≤ si ≤ s, with s2 shi ,
meaning that the available a priori and a posteriori esti-
mates bound the real yet unknown value of the encoder
map si. Then, using (13), one can write bsi ≤bsi Å pi ≤ s, with
s2 shi and, directly inspecting all cases, the following is
obtained: for each s ¼ ðs1,…, sκiþhiÞ 2 shi , if s

j ¼ bsi, j ¼ 0,
then it must be pi,j = 0 and the absence of any Ai-neighbor
in the non-visible part of the (i, j)th topology is inferred; if
sj = 1 butbsi, j ¼ 0, then it must be pi,j = 1 and the presence of
at least Ai-neighbor in the non-visible part of the (i, j)th
topology is inferred; the case where sj ¼ bsi, j ¼ 1 is not
informative, as pi,j can be either 0 or 1, and adds no in-
formation, sinceMh already knows about the existence of
an Ai-neighbor in the (i, j)th topology justifying the be-
havior of Ai; finally the case sj = 0 and bsi, j ¼ 1 is not
possible by construction.

From the two informative cases described above, it is
possible to obtain the occupancy estimates ηhi, j and the
components of the refined visibility map for each (i, j)th
topology. LetWi,j = ηi,j (qi) \ Vh be the portion of the (i, j)th
topology that is visible by Mh. To begin with, the oc-
cupancy estimate must contain the list Ihi, j ¼ Ihi \ηi, jðqiÞ
made of the continuous states of all Ai-neighbors that are
visible by Mh. The case with Ihi, j not empty (and hencebsi, j ¼ 1), does not allow, as said above, inferring infor-
mation on the non-visible part of the (i, j)th topology;
accordingly, the jth component of the refined visibility map
is set to be the visible portion of the (i, j)th topology, i.e.,
Vh
i, j ¼ Wi, j. Instead, with Ihi, j being empty (and hence bsi, j ¼

0), two sub-cases occur: first, if no further neighbor is
inferred a posteriori ðshi, j ¼ 0Þ, the occupancy estimate

must describe the fact the non-visible part of the (i, j)th
topology needs to empty if Ai is cooperative; second, if at
least an Ai-neighbor is inferred a posteriori ðshi, j ¼ 1Þ, the
occupancy estimate must describe the fact the non-visible
part of the (i, j)th topology needs to be occupied if Ai is
cooperative. In both cases, the occupancy estimate must
contain the region ηi,j (qi) \ Vh, annotated by the binary
number sj. Also, the monitor’s visibility is extended by
setting the jth component of the refined visibility com-
ponent to Vh

i, j ¼ ηi, jðqiÞ. All this reasoning is encoded into

the ith occupancy estimator map ηhi and refined visibility
map Vh

i .
Finally, the logic by which Mh can determine the co-

operativeness of Ai, intuitively described in the previous
section, is made formal as follows. First, Mh can extract,
from the forward link table Li, the elements that contain a
behavior that is ϵ-similar to the measured behavior ~q, which

2156 The International Journal of Robotics Research 43(14)

are obtained as L ¼ Li)ϵ~q. Then, if L ¼ f, no explanation
exists and the ith agent is considered uncooperative; oth-
erwise, given L ¼ f~q pre

i,l , σ pre
i,l , I i,lgl, Mh needs to check

whether or not any estimated input set I i,l can be directly
confirmed by its own sensors; in the first case,Ai is certainly
cooperative, while in the second case, it is assumed to be
possibly-cooperative. These two last cases are distinguished
by verified if I i,l4[jWi, j. This reasoning is encoded into the
classifier map Ci described above.

4.4. Algorithmic description of the local monitor

From a procedural viewpoint, Mh is organized as follows:

· Initialization Phase. The iteration step is set to k = 0.Mh

measures the instantaneous value of the continuous state
of Ai and uses it as the first update estimate

q post
i ð0Þ : ¼ qmeas

i ð0Þ; moreover, having no prior
knowledge of the ith behavior, the discrete state set is set
conservatively to any possible value, i.e., σ post

i ½0� ¼ Σi.
· Prediction Phase. At the kth step, Mh evaluates the

topology visibility check vi and the known encoder mapbsi using the latest value of the continuous state qmeas
i ð0Þ

and the partial input set Ihi ; this is obtained as follows:

vi½k� ¼ vi
	
qmeas
i ½k�,Vh½k�

,bsi½k� ¼ bsi	qmeas

i ½k�, Ihi ½k�

;

then, the set of predicted events is computed by using the
known encoder map as e prei ½k� ¼ beiðbsi½k�, vi½k�Þ, which al-
lows computing the set of predicted discrete states

σ pre
i ½k� :¼ Δi

	
σ post
i ½k � 1�, e pre

i ½k�

; (14)

and, thereafter, the extended known input set bIhi ¼ fIi,lgl
and the set of predicted cooperative behaviors (12); these
behaviors are obtained as the solutions, for all

ðσl, Ii,lÞ 2 σ pre
i ½k�×bIhi , of the following ODE with initial

condition qi,lð0Þ ¼ q post
i ½k�:

_qi,lðtÞ ¼ f *i
	
qi,lðtÞ, σl, Ii,l

; (15)

Finally, the forward link table Li is updated as the set of
all triples of predicted behavior ~qi, lð0,ΔÞ, and related dis-
crete state σland extended known input set Ii,l, i.e.,

Li k½ � :¼ ~qi, l 0,Δð Þ, σl, Ii,l
	
� �

l
:

· Update/Matching Phase. During this phase, Mh tries to
match the measured behavior with any predicted one
and, if successful, updates the values of the ith con-
tinuous state q post

i ½k�, the discrete state set σ post
i ½k�, and

known encoder map s posti ½k�; this is obtained through the
operations:

q post
i ðtkþ1Þ ¼ qmeas

i ðtkþ1Þ,
σ post
i ½k� ¼ ProjΣi

	
Li½k�)ϵ~q

meas
i ð0,ΔÞ

,

s posti ½k� ¼ shi
	
s prei ½k�, σ post

i ½k � 1�, σ post
i ½k�

;

In addition, Mh computes the occupancy estimator map
ηhi and enlarges, if possible, the known visibility map Vh

i as
follows:

ηhi ½k� ¼ ηhi
	
s prei ½k�, s posti ½k�, Ihi ½k�

,

Vh
i ½k� ¼ Vh

i

	
s prei ½k�, s posti ½k�

;

Finally, the behavior of Ai is classified as follows:

Ch
i ½k� ¼ Ci

	
Li½k�, ~qmeas

i ð0,ΔÞ,
�
Vi, j

�

:

· Moving to the next iteration. The iteration step is in-
cremented (k = k + 1), and the execution loops back to the
prediction phase.

5. Set-valued consensus protocols for
socially-agreed classification

This section moves on to describe how m local monitors,
M1,…,Mm, operating on board different agents,
A1,…,Am, can exploit intercommunication to improve
their classification and reach a socially agreed decision on
the cooperativeness of Ai. This is especially important
when, as is usually the case, the individual monitor Mh

does not have enough information to reach a certain con-
clusion. In the motorway example, this represents the sit-
uation in which m local monitors in several vehicles try to
work out whether the driver (automatic or human) of a
commonly seen or nearby vehicle is following the driving
rules or not. In most cases, no vehicle is able to see the entire
neighborhood of Ai and may have enough information to
make a decision; however, by combining the estimates of
several vehicles, detection may become possible, and a
trajectory of Ai that does not comply with the driving rules
may be discovered.

Here, monitors become nodes of a consensus protocol
and exchange information by transmitting messages ac-
cording to a communication graph Gi. The graph depends
on the distance between the vehicles and not on whether
the vehicles can see each other or not, thereby the hth
monitor can obtain information even from a monitor it
cannot see. Exchanged messages are integral and au-
thentic, i.e., their content is correct, and the identity of the
sending monitor is guaranteed (cf. the discussion in the
conclusion). Assuming that each monitor/node Mh shares
with its communication neighbors, or c-neighbors, the
output of the locally assessed occupancy estimator map,
ηhi , the remainder of this section discusses what operations
and under what conditions enable the design of each
consensus node. The key symbols used are summarized in
Table 9 in Appendix E.

Fagiolini et al. 2157

5.1. Design requirements for the consensus

A first requirement in developing the protocol is to
conform to the distributed nature of P. Consequently, the
consensus protocol needs to be distributed, i.e., not
involve a centralized process, and be based on consensus
nodes that use only the information reconstructed by
each monitor Mh or received from their c-neighbors. A
common approach in these contexts (Olfati-Saber et al.,
2007) is to design consensus nodes as iterative processes
that elaborate, at every given consensus step κ, a limited
amount of information. In particular, here, each hth
monitor/node is assumed to have a consensus state
Xh 2 PowðQÞ that is initialized with the latest estimate of
the occupancy map, i.e., Xh½0� ¼ ηhi ½k�; at every κ, the
node extracts the information received in the messages of
its c-neighbors, suitably updates its state Xh[κ], and
shares it back. This is performed up to a maximum step
κ, to be quantified, and is intended to allow all partici-
pating monitors to improve their classification of Ai

and to agree on a socially accepted decision. Moreover,
this decision should be the same as that of a hypothet-
ical, but not present, central process that uses all esti-
mates, η1i ½k�,…, ηmi ½k�, together. Note that κ is a step-
index that is independent of the temporal index k used in
the monitor.

A second point to consider is related to the existence of a
centralized decision and the ability of the decentralized
consensus nodes to reach it through iteration. In this regard,
an estimate ηi of the occupancy of all (i, j)th topologies is
global if it is simultaneously based on the data,
η1i ½k�,…, ηmi ½k�, of all local monitors. A well-defined cen-
tralized decision on the cooperativeness of Ai is obtained
only if a global estimate ηi is uniquely defined. This re-
quirement imposes conditions on the type of data to be
handled and the operation used to combine it, as clarified
qualitatively below. Regarding first the type of data, it is
worth noting that the outputs of the local monitors are
continuous sets in PowðQÞ, and not of real scalars or vectors
as is typical in traditional consensus algorithms (Olfati-
Saber et al., 2007); therefore, a set-valued consensus
framework as in Fagiolini et al. (2015) must be adopted. In
the motorway example, the outputs of the local monitors are
sets comprising points in Q, continuous regions that are
subsets ofQwhere the presence or absence of other vehicles
is required, or continuous regions indicating possible
configurations of nearby vehicles engaged in platooning.

Moreover, with regard to the type of operation, the
following should be considered. Suppose that)2 is a binary
operation used to combine the estimates, η1i and η

2
i , obtained

by two monitors that are observing the behavior of Ai, i.e.,
suppose that η

0
i ¼ η1i)

2η2i is a new estimate that is hope-
fully more accurate than each η1i and η2i taken individually.
Now, if a third estimate η3i is available from another monitor,
there are at least six ways to define a global ηi using the
binary operator)2; these estimates are: ðη1i)2η2i Þ)2η3i ,

ðη1i)2η3i Þ)2η2i , ðη2i)2η1i Þ)2η3i , ðη2i)2η3i Þ)2η1i ,
ðη3i)2η1i Þ)2η2i , ðη3i)2η2i Þ)2η1i ; other global estimates can
be found by associating a different order between the pa-
rentheses, e.g., as η1i)

2ðη2i)2η3i Þ and η1i)
2ðη3i)2η2i Þ.

One way to overcome this ambiguity is to introduce a
ternary operator)3 which generates the output
η
0
i ¼)3ðη1i , η2i , η3i Þ. Although this reasoning can be ex-
tended in principle for any number of input arguments, and
it may be assumed that each monitor Mh is provided with
all the resulting operators, such a solution is not practical in
the present context. Indeed, each monitor/node Mh has a
number of c-neighbors that varies over time and depends on
the communication range; if the operator to be used would
depend on this number, every monitor Mh should always
know the exact number of other nodes that are participating
in the consensus, in order to select the proper operator.
Unfortunately, this information is centralized and may be
unavailable due to regulation-based privacy restrictions.
Finally, this strategy would require all nodes to process the
estimates in the very same order and would generally in-
troduce more complexity in the node algorithm.

Another aspect also affecting the second point above is
the heterogeneity between the convergence times of any
two nodes/monitors M1 and M2. Qualitatively speaking,
the time within which a node has enough information to
build a centralized estimate ηi is proportional to the
maximum number of hops required for all information to
reach it. This number varies widely from monitor to
monitor and strongly depends on its current visibility.
Thus, it may be the case that the state X1 of a monitor M1

and those of all its c-neighbors are converging to some
value, while the consensus process on a monitorM2 is still
in a transient phase. If no specific property is satisfied by
the operator used by any monitor to update its states, a
phenomenon that may occur is that, when M2 eventually
converges,M1 may have reverted to another transient; this
would lead to an undesirable, possibly endless oscillation.
One solution is to avoid the transient and require all nodes
to process all received estimates in the same order, which
again is a centralized solution. Conversely, it is desirable
that when a monitor/node and its c-neighbors have reached
the same value, η1i ¼ / ¼ ηmi , implying that a consensus
state is already forming locally, this value is automatically
kept indefinitely.

The above issues fall within the general requirements of a
set-valued consensus algorithm Fagiolini and Bicchi
(2013). They are solved simultaneously if the merging of
any two occupancy estimates, η1i and η

2
i , can be obtained by

a binary operator) satisfying the following properties:

· (idempotency) ηi,1)ηi,1 = ηi,1, which ensures that a
consensus value that is established between any monitor/
node Mh and its c-neighbors is maintained indefinitely;

· (commutativity) η1i)η2i ¼ η2i)η1i , ensuring that the
updated state of each hth monitor/node is independent of
the order in which messages are received by it;

2158 The International Journal of Robotics Research 43(14)

· (associativity) η1i)ðη2i)η3i Þ ¼ ðη1i)η2i Þ)η3i , where η
3
i

is a third occupancy estimate, guaranteeing that a ternary
operator constructed on any composition of) gives the
same result.

If the three properties hold, one can define the unique and
global centralized estimate

ηi ¼
	
/
		
η1i)η2i

)η3i

)/

)ηmi ¼)m

h¼1η
h
i , (16)

where the compact form on the right-hand side is unam-
biguous since the order in which each pair of input argu-
ments is combined does not change the output. Having
listed the properties of), its design will be discussed in the
next subsection.

A final aspect to consider is the uncertainty due to im-
perfect synchronization between monitors and differences
in their measurement noises. A practical way to deal with
this uncertainty is to introduce a consensus tolerance pa-
rameter χ. This is used to conservatively expand the ex-
tension of all point measurements of the continuous states of
Ai and detected Ai-neighbors, as well as the occupied/free
regions of each (i, j)th topology. Precisely, each measured
point qm is replaced by a sphere of radius χ centered at qm,
while the boundaries of each free/occupied space in the (i, j)
th topology are lifted outward by a quantity χ. This is done
by a liftingmap Lift (�) that will defined later. Parameter χ is
to be tuned based on simulation, as discussed for the
mismatch tolerance ϵ used in the previous section.

5.2. Technical explanation of consensus nodes

The derivation of the hth consensus node requires defining
the following few objects:

· A lifting map Lift (�) that, given an occupancy estimate
ηi ¼ fηi,lgland a consensus tolerance χ, returns the set

of the elements η*i,l enlarged by a quantity χ; this is

obtained as:

Lift : Pow Qð Þ×Rþ → Pow Qð Þ

ηhi , χ
	

1 η*i,l2 Pow Qð Þ
n o

,
(17)

where η*i,l is the sphere of radius χ centered at ηi,l, if ηi,lis
singleton, or it equals the set ηi,lafter being lifted outward
by χ, otherwise;

· An occupancy merging map that, given two occupancy
estimates η1i and η

2
i , generates a new occupancy estimate

ηþi , by applying for each jth component the operator

) : Zi × Zi → Zi

η1i, j, η
2
i, j

� �
1ηþi, j,

(18)

with Zi ¼ PowðQÞ × PowðQÞ ×PowðQÞ ×B, whose de-
scription is detailed below.

Technically speaking, the reasoning behind the con-
struction of a new and more accurate occupancy estimate η

0
i

is as follows. At any consensus step κ, any two consensus
nodes have current estimates η1i and η2i of the occupancy
map. Recall that each ηhi ¼ ðηhi, j,…, ηhi, κiÞ and each jth

component is either of the form ηhi, j ¼ fIhi, j,Wh
i, jg, thus

containing only known information, or

ηhi, j ¼ fIhi, j,Wh
i, j,W

h
i, j, s

jg, and thus also contains information

deducted. Here, known information refers to data that has
been initially measured by a local monitor or confirmed in a
previous merging of two estimates, while deducted infor-
mation refers to data that has been inferred by a local
monitor or through a previous merging of two consensus
nodes’ estimates but has not yet been confirmed by known
data of any consensus node. Accordingly, for the hth
consensus node, each Ihi, j is the known input set of all visible
neighbors that lay in the (i, j)th topology, Wh

i, j is the visible

portion of the (i, j)th topology, W
h
i, j is a non-visible portion

of the (i, j)th topology where the presence ðsj ¼ 1Þ or ab-
sence ðsj ¼ 0Þ of other robots is required. In addition, to
account for the different measurement noise affecting each
local monitor and the possible incomplete synchronization
between consensus nodes, each continuous state qh 2Q,
initially estimated by a monitorMh, is mapped into a sphere

qh, * 2 PowðQÞ, of radius χ and center qh, which belongs to
Ihi, j. This is done using the lift map defined above.

Now, consider first the case where both estimates contain
only known information. Adopting a simpler notation here
for the ease of exposition, let the two estimates be x1 = (I1,
W1) and x2 = (I2, W2), and let x+ = (I+, W+) be the new
estimate. To begin with, in the region visible by both
consensus nodes, i.e.,W1 \W2, any sphere q 1, * 2 I1 has, by
construction, a nonempty intersection with one sphere

q 2, * 2 I2, and vice versa; within that region, each pair of
such spheres can be replaced by their intersection

q 1, *\ q 2, * and included as known information in I+. Then,
in the subregions W1 \ W2 and W2 \ W1, where only one
consensus node has visibility, all spheres qh, * can only be
directly included in I+ without any refinement. Furthermore,
since both known regions of the two consensus nodes have
been used, the overall known area can be updated to their
union, i.e., W+ = W1 [W2.

As a second case, suppose now that the second esti-
mate also contains deducted information, i.e.,
x2 ¼ ðI2,W2,W 2, s2Þ; consistently, suppose also that the
new estimate has the form xþ ¼ ðIþ,Wþ,Wþ, s2Þ. The
known information is treated as above. It is now essential to
understand what information can be extracted by combining
the known data of the first node with the deducted one of the
former. To this regard, such data may be confirmed by
known data of the first consensus node, refined (thus leaving
again a deducted yet more precise information), dis-
confirmed (hence also revealing an uncooperative behavior
of Ai), or left invariant. These cases happen as follows:

Fagiolini et al. 2159

· (s2 = 1) W 2 describes a region where the second node
has deducted the presence of a robot. First, one can try to

see if there exists at least one sphere q 1, * 2 I1 that be-
longs to W 2; if so (case 1), the deduction is confirmed
and the region W 2 can be safely removed as it is already

represented by the included sphere q 1, *, also Ai can be
classified as cooperative; if not, one can try to check if
W 2 is totally visible from the first node, which happens
when W 24W1; in such a case (case 2), the deducted
information is disconfirmed by the known data of the
first node, which also means that Ai is uncooperative; if
W 2 is not totally visible from the first node (case 3), the
presumed robot may lay in the remaining hidden portion,
which is added to the new estimate as a deducted, yet
more precise, information through the smaller set
Wþ ¼ W 2∖W1; finally, if W1\W 2 ¼ ∅ (case 4), nothing
can be said and the deducted information is left invariant,
i.e.,Wþ ¼ W 2. In these last two cases,Ai is classified as
possibly-cooperative.

· (s2 = 0) W 2 describes a region where the second node
has deducted the absence of a robot. First, one can try to

see if there exists at least one sphere q 1, * 2 I1 that be-
longs toW 2; if so (case 1), the deduction is disconfirmed
andAi can be classified as uncooperative; if not (case 2),
one can verify ifW 2 is totally visible from the first node,
which happens when W 24W1, in which case the de-
ducted information is confirmed and the region W 2 can
be safely removed as it will be included in the visible
region W+ = W1 [W2; also, Ai can be classified as
cooperative; if W 2 is not totally visible from the first
node (case 3), the absence of robots must still be satisfied
in the remaining hidden portion, which is added to the
new estimate as a deducted, yet more precise, infor-
mation through the smaller set Wþ ¼ W 2∖W1; finally, if
W1\W 2 ¼ ∅ (case 4), as above, the deducted infor-
mation is left invariant, i.e.,Wþ ¼ W 2. In these last two
cases, Ai is classified as possibly-cooperative.

In all these cases, the new visible part is updated by
including the visible regions of both nodes, i.e.,W+ =W1 [
W2. The other settings in which the first estimate also
includes deduced information, or both estimates do it,
follow the above discussion directly, noting that the same
reasoning applies mutatis mutandis. This is encoded in the
occupancy merging map) defined above. It is finally
worth noting that) is idempotent, commutative, and
associative.

Having said this, all monitors that are trying to determine
whether or not Ai is cooperative can become nodes of a
distributed consensus algorithm that allows them to share
information and reach a social agreement. More precisely,
given the ith communication graph GiðW i, EiÞ, whereW i ¼
f1,…,mg is a set of vertices representing the m monitors/
nodes that are trying to classify the behavior of Ai, and
where Ei is a set of edges that describes the available

communication links. Denote with dh,j the distance between
two vertices h, j2W i, i.e., the minimum number of vertices
to traverse in order to go from h to j or vice versa; denote
with diamðGiÞ the graph diameter being the maximum
distance between any two vertices, i.e., diamðGiÞ ¼
maxh, j2W i dh, j; in addition, given a vertex h2W i, the
vertices which are connected via any sequence of p edges
are termed the p-hop c-neighbor of h and are described as
whðpÞ ¼ fj2W ijdh, j ≤ pg.

Assuming that Gi is undirected, i.e., any present link is
bidirectional and allows a monitor/node to send and receive
messages from another connected monitor/node, and is
connected, i.e., there exists a multi-hop link connecting any
two vertices in W i, the following result can be shown, the
proof of which can be found in Appendix C:

Theorem 2. Social agreement on the centralized occu-
pancy estimate. The collective consensus state X = (X1,
…, Xm) initialized with the value ðη1i ,…, ηmi Þ and up-
dated according to the iterative rule

Xh½κ þ 1� ¼)l2whð1Þ Xl½κ�, for κ > 0, (19)

converges, in at most κ ¼ diagðGiÞ steps, to the steady-state
value 1mηi of social agreement where ηi is the centralized
occupancy estimate obtained as in (16).

5.3. Algorithmic description of consensus nodes

From a procedural viewpoint, the steps to be performed are
the following:

8 Initialization Phase. Initialize the consensus step (κ = 0).
The hth monitor/node initializes its consensus state Xh [0]
with the occupancy estimate ηhi ¼ fηhi,lgl obtained via
(9), once it has been lifted by the consensus tolerance χ:
this is done via the formula:

Xh½0� ¼ Lift
	
ηhi , χ

;

8 Consensus Update Step. After incrementing the con-
sensus step (κ = κ + 1), the hth nodes updated its current
occupancy estimate ηhi ½κ� using data received from its
c-neighbors; this is obtained by applying the following
formula:

η h
i, j½κ þ 1� ¼)l2whð1Þ ηli, j½κ�, "j ¼ 1,/κi;

8 Loop back. The execution loops back to the update step.

6. Autonomous forklifts in a warehouse

In this section, the case study of an industrial warehouse is
presented to show how the proposed methodology works.
Figure 2 considers n autonomous forklifts moving products
from conveyor belts (source points) to storage stacks

2160 The International Journal of Robotics Research 43(14)

(storage points). The industrial environment consists of a
matrix of cells and macrocells. Each cell is a square area
accessible by a single forklift at any one time, while each
macrocell is a corridor simultaneously accessible by several
forklifts moving in the same direction. Each forklift Ai is
assigned a path, which is a sequence of adjacent cells and
macrocells and which connects the sources to storage
points. When the paths of two forklifts intersect, each
forklift must follow a protocol Pi to avoid collisions co-
operatively, thereby priority to any forklift approaching
from the right is given. Specifically, when a forklift Aj is
approaching from the right, Ai must decelerate ðDÞ, or
otherwise accelerate ðAÞ to a maximum speed of vm.
Forklifts have omnidirectional sensors that measure the
continuous states of neighboring forklifts within a distance
Ri.

6.1. Cooperation protocol and local monitor
explicit derivation

The protocol is based on the following assumptions: (1)
the ith path consists of connected line segments, (2) the
ith forklift is initialized and always remains on the path,
(3) orientation changes of the path are executed instan-
taneously on the spot by the robot, (4) the ith decoder map
ui is independent of the continuous states of neighboring
forklifts. The first three assumptions allow a general
dynamics map to be considered for each forklift but
reduce the required maneuvers in Pi only to two, which
helps illustrating the local monitor derivation; the fourth
assumption implies that no discretization scheme is
needed.

The environment is Q ¼ R
2 × SOð2Þ×R. A generic

point in the environment is denoted as q = (x, y, θ, v).
Referring to the ith forklift, the components of Pi and their
operation are as follows. Given the continuous state qi = (xi,
yi, θi, vi) and a safety distance di, the topology set is ηi = (ηi,1)
with

ηi, 1 :Q→ Pow Qð Þ

qi1
�
q
�� x� xið Þ2 þ y� yið Þ2 ≤ di,

�π
2
≤ arctan

y� yi
x� xi

� �
� θi ≤

π
4g,

and the neighborhood is N i ¼ ηi, 1ðqiÞ; the encoder map is
si = si,1 with

si, 1 :Q×Qni →B

qi, Iið Þ1Åql2Ii1ηi, 1 qið Þ qlð Þ;
the visibility map is

V i :Qn → Pow Qð Þ
q1,…, qnð Þ1 q

�� x� xið Þ2 þ y� yið Þ2 ≤Ri

� �
,

with Ri > di; given the alphabet of events Ei = {ei,1, ei,2}, the
encoder index set is Γi ¼ fγi, 1, γ*i, 1g, with γi, 1 ¼ γ*i, 1 ¼ 1, so
that the detector map is

ei :B→ Pow Eið Þ

si1

(
ei, 1 if ¬si, 1,

ei, 2 if si, 1;

The discrete state set is Σi ¼ fA,Dg and the automaton is

δi :Σi ×Pow Eið Þ→Σi

A, ei, 1
	

1A,
A, ei, 2
	

1D,
D, ei, 1
	

1A,
D, ei, 2
	

1D,

with initial state σ0i ¼ D; the decoder map is

ui :Q×Σi →U i

qi, Að Þ1 �μ vi � vmð Þ, 0ð Þ,
qi, Dð Þ1 �μvi, 0ð Þ,

where μ is a positive constant, and the dynamics map is

Figure 2. Warehouse case-study. Five forklifts are supposed to cooperate as follows: forkliftsA0 andA1 need to negotiate entrance to the
cells 123 and 125; forkliftsA1 andA2 for the cell 124; forkliftsA1 andA4 for the cell 125; forkliftsA0 andA4 for the macro-cell {125,
165, 205}.

Fagiolini et al. 2161

fi :Q×U i → Pow Qð Þ
qi, uið Þ1 vi cos θi, vi sin θi,ωi, aið Þ:

The controlled dynamics map is then

f *i :Q ×Σi → Pow Qð Þ
qi, Að Þ1 vi cos θi, vi sin θi, 0, � μ vi � vmð Þð Þ,
qi, Dð Þ1 vi cos θi, vi sin θi, 0, � μvið Þ:

and its solution qiðtÞ ¼ f
f*i
ðqi½k�, σi½k�Þ, for t 2 [0, Δ], is8>><>>:

xiðtÞ ¼ xi½k� þ Fðσi½k�, tÞcosðθið0ÞÞ,
yiðtÞ ¼ yi½k� þ Fðσi½k�, tÞsinðθið0ÞÞ,
θiðtÞ ¼ θið0Þ,
viðtÞ ¼ V ðσi½k�, tÞ þ vi½k�e�μt,

(20)

with FðA, tÞ ¼ vmt þ vi½k��vm

μ αðtÞ, FðD, tÞ ¼ vi½k�
μ αðtÞ,

V ðA, tÞ ¼ vmαðtÞ, V ðD, tÞ ¼ 0, and α(t) = 1 � e�μt.
Moreover, the construction of a monitor Mh is based

on the following. The visibility check map is vi = (vi,1),
with

vi, 1 :Q×Pow Qð Þ→B

qi,Vhð Þ1
(
1 if ηi, 1 qið Þ4Vh,

0 otherwise,

The known encoder map is bsi ¼ bsi, 1 with

bsi, 1 :Q×Qbni →B

qi, I
h
i

	

→Åql2Ihi

1ηi, 1 qið Þ qlð Þ,

The event estimator is

bei :B ×B→B
2

bsi, við Þ1
¬bsi, 1bsi, 1vi, 1Å¬vi, 1

 !
,

and finally the nondeterministic automaton is initialized
with the discrete state value fA,Dg and its dynamics is

Δi : Pow Σið Þ×Pow Eið Þ→ Pow Σið Þ

A, ei, 1
	

, D, ei, 1
	

, A, Df g, ei, 1
	

1A,

A, ei, 2
	

, D, ei, 2
	

, A, Df g, ei, 2
	

1D,

A, ei, 1, ei, 2
� �	

, D, ei, 1, ei, 2
� �	

,

A, Df g, ei, 1, ei, 2
� �	
 1 A,Df g:

6.2. Performance evaluation

The validity and performance of the proposed methodology
have been evaluated in a representative industrial ware-
house. Assuming the average size of 1.5 × 2 m for a forklift,
which can be located in any orientation, it is reasonable to

assume that the warehouse layout consists of cells that are
twice the largest size of the forklift, i.e., 4 × 4 m. Then, let us
suppose that the entire warehouse, or a part of it, consists of
a grid of 40 × 20 cells, leading to an overall size of 160 ×
80 m. Also, suppose that a varying number of fixed ob-
stacles, such as storage points, let accessible cells be limited
to a number ranging from 30 to 70% of the total, which
roughly equates to 120 to 280 free cells. A variable number
of forklifts is considered, out of which the first, A0, mis-
behaves, and the other ones (varying in number from two to
10) must try to find it out as they move towards their
destination.

Precisely, each forklift is assigned with a path of length
10 cells and initialized at the center of the starting cell, and
must follow P in order to avoid collisions when accessing
shared cells or macrocells; conversely,A0 is programmed to
stop upon accessing the first shared resource, thus possibly
generating a (partial) deadlock. The other forklifts are as-
sumed to run their local monitors and possibly their con-
sensus nodes. In addition, given the large number of
possible combinations, several initial configurations have
been randomly generated, varying in density of free cells,
number of forklifts/monitors, and the activation or non-
activation of consensus nodes, all characterized by having at
least one monitor in the vicinity of A0 and a forklift
(possibly the same one) that must share a cell/macrocell
with it during the simulation run.

The methodology has been statistically evaluated in
terms of several metrics, by analyzing 50 datasets that are
generated according to the following rationale: with regard
to the density of the environment, five different values
(30%, 40%, 50%, 60% and 70%) representing the per-
centage of free cells have been taken into account; with
regard to the number of forklifts/monitors, values from 1 to
10 have been used. This leads to the 50 datasets indicated
above. Moreover, each dataset comprises 1024 simulations
obtained using an equal number of randomly generated
initial configurations, characterized by the same value of
environment density ρ and number of forklifts/monitors m.
Finally, a communication graph G0 is randomly generated
per dataset, with the only requirement to be connected.

As a first metric, the detection success rate S1 has been
analyzed with respect to the various datasets. It should be
recalled here, as is implied by the theory, that in the pro-
posed approach, each robot is considered to be possibly
cooperative unless proven otherwise. Then, in this scenario,
the result of the classification of A0 by any monitor can
either be uncooperative, when the monitor has sufficient
visibility to discover the absence of another forklift blocking
A0, or possibly-cooperative otherwise. In order to measure
the improvement achieved by the exchange of information
among the monitors, the number of successes and failures
has been assessed both before and after the start of the
consensus algorithm: in the former case, detection is
counted as successful if at least one local monitor is able to
discover the misbehavior of A0, and unsuccessful other-
wise; in the latter case, it is counted as successful if the

2162 The International Journal of Robotics Research 43(14)

centralized occupancy estimate η0, reached by all consensus
nodes, leads to a misbehavior discovery, and unsuccessful
otherwise.

The results of the analysis are shown in Table 1, which
reports the average values Sm1 and standard deviations Sd1 of
the success rate S1 for each different dataset. A typical
simulation run with m = 4 monitors, density ρ = 30%, and
activated consensus nodes is graphically depicted in
Figure 3. At least four notable trends can be extrapolated,
three of which concern Sm1 and one concerns Sd1 :

· Firstly, it can be seen that the average success rate Sm1
increases, for a constant value of the environment
density ρ, as the number m of monitors increases. From
an a posteriori inspection of the simulations, it can be
stated that with a greater number of monitors moving in
the environment shared with A0, it is more likely that at
least one of them is in the right configuration to be able to
detect the misbehavior; in a sentence, the method works
better with more monitors;

· Secondly, it can be observed that the average success rate
decreases, albeit slightly, with increasing density. It can
be seen that the presence of more obstacles justifies this
decrease and consequently also by the lower visibility of
the monitor; shortly, in a more object-rich environment,
the malfunctioning robot is more likely to hide evidence
of its misbehavior;

· The third observed trend is related to the use of the
consensus algorithm and, thus, the sharing of information
among monitors. Besides confirming that, as expected,
the average success rate Sm1 always increases when
consensus is activated, it occurs also that the increase is
stronger for larger values of m. Furthermore, for m ≤ 3, a
relative decrease in the success rate continues to occur
when the density ρ increases, but this phenomenon is
much less present, in proportion, for larger values m; in a
nutshell, by social agreement in a more populated envi-
ronment gives themethodology robustness and efficiency;

· A final aspect concerns the standard deviation σE, which,
with or without the consensus activated, increases with
the density of the environment, i.e., the success rate
deviation of all simulations within each dataset from the
mean value is larger; however, it is important to say that
Sd1 decreases as the number of monitors increases, thus
demonstrating a higher reliability of the methodology.

As a second step in the evaluation of the methodology,
the robustness against uncertainty due to a small model
mismatch, measurement noise, and partial desynchroniza-
tion between the monitors is assessed. To this end, it is
interesting to compare the two cases in whichA0 is affected
by process and measurement noise but is cooperative in the
first case and uncooperative in the second; also, monitors are
affected by a small offset disturbing their synchronization.

Table 1. Warehouse case-study. Performance analysis with
respect to the number of monitors m, environment density ρ, and
the activation of the consensus algorithm.

W/out consensus With consensus

m ρ (%) Sm1 ð%Þ Sd1 ð%Þ Sm1 ð%Þ Sd1 ð%Þ

1 30 9.7 3.2 - -
1 40 10.3 3.9 - -
1 50 9.1 2.9 - -
1 60 8.5 4.2 - -
1 70 8.2 3.6 - -
2 30 15.6 1.6 35.5 2.1
2 40 16.0 1.7 36.6 1.4
2 50 14.7 3.2 38.4 0.9
2 60 15.0 1.7 37.5 1.1
2 70 12.8 4.1 37.3 2.7
3 30 19.3 2.8 48.1 1.6
3 40 19.9 3.6 47.9 1.3
3 50 19.8 2.0 47.8 0.9
3 60 18.4 1.9 46.5 2.0
3 70 16.7 3.7 46.1 2.2
4 30 23.9 2.0 58.8 0.9
4 40 23.9 2.0 57.2 1.7
4 50 23.1 1.8 57.3 1.4
4 60 22.9 1.9 55.0 1.8
4 70 20.0 2.7 54.7 0.9
5 30 27.3 1.5 67.4 1.0
5 40 27.3 1.7 66.2 1.0
5 50 27.7 1.1 64.9 1.4
5 60 25.3 2.5 63.4 1.0
5 70 23.3 3.1 61.0 1.4
6 30 30.2 2.3 76.7 1.0
6 40 30.9 2.5 74.1 0.5
6 50 29.2 2.0 71.5 0.8
6 60 28.8 3.2 68.6 1.3
6 70 26.5 1.6 65.3 1.2
7 30 33.6 1.6 84.5 0.4
7 40 32.7 1.1 81.8 0.9
7 50 32.3 1.8 77.8 0.5
7 60 32.0 1.9 74.8 0.6
7 70 30.5 3.1 69.4 0.6
8 30 35.9 1.0 90.9 0.7
8 40 35.8 1.9 87.3 0.7
8 50 35.1 1.7 82.9 0.9
8 60 33.5 1.7 78.6 0.6
8 70 32.0 2.2 73.9 0.5
9 30 38.3 2.6 95.5 0.3
9 40 38.0 1.8 91.5 0.4
9 50 38.0 1.8 85.8 0.6
9 60 35.1 1.0 80.8 1.0
9 70 33.8 1.4 74.7 0.8
10 30 39.5 1.8 99.1 0.6
10 40 40.0 1.0 93.7 0.5
10 50 39.3 1.6 89.0 0.9
10 60 37.0 2.4 82.1 0.9
10 70 35.1 2.4 76.3 1.2

Fagiolini et al. 2163

To better highlight the possible performance degradation, it
is worth considering scenarios with a number of forklifts/
monitors and an environment density as in the dataset best
performing in the previous evaluation step, i.e., with m = 10
and ρ = 30%. Then, denoting with I4 the identity matrix of
order 4, model mismatch, measurement noise, and monitor
desynchronization are, as common, assumed to be described
by Gaussian random signals, white and zero-averaged, with
covariance matrices given by α1I4, α2I4, and α3I4, re-
spectively, such that each αldenotes the 2-norm of thelth
matrix. That is, all datasets with uncertainty have been

obtained in this way: the continuous state q0 is updated
according to the modified ODE _q0 ¼ f0ðq0, u0Þ þ μ0, 1,
where μ0,1(t) is the model mismatch signal, the measured
behavior is ~qmeas

0 ð0,ΔÞ þ ~μ0, 2ð0,ΔÞ, where μ0,2(t) is the
measurement noise signal, and the effect of desynchroni-
zation occurs as ~qmeas

0 ð�jμ0, 3j,Δ� jμ0, 3jÞ, where μ0,3(t) is a
time offset signal. Moreover, for the sake of tractability, it is
assumed in this evaluation that all other forklifts move
according to the nominal rules of the cooperation protocol
so that the effects generated by the individual agent A0 can
be shown and that all monitors measure the same noisy

Figure 3. Warehouse case-study. Typical run of simulation with m = 4 monitors and environment density ρ = 30% in which a
misbehaving forkliftA0 stops and causes deadlock. The hth row, for h = 1,…, 4, refers to the hth forklift with its onboard monitor and
consensus node. The κth column illustrates the collective consensus state X(κ), with X ð0Þ ¼ ηh0 being the map initially estimated by
everyMh, which graphically shows how the occupancy map is estimated and improved as the consensus step κ progresses. A blue circle
indicates the current monitor, while a yellow/red circle on A0 indicates if the classification returns possibly-cooperative or
uncooperative, respectively. It can be observed that all forklifts reach a social agreement on the misbehavior of A0.

2164 The International Journal of Robotics Research 43(14)

behavior of A0. As two further metrics, the rate S2 of false
uncooperative classifications, in the first case, and the rate
S3 of false cooperative classifications, in the second case,
i.e., the number of simulations in which A0 is incorrectly
classified out of the total of 1024 simulations in the dataset;
the simulations in which it is classified as possibly-cooperative
are not considered as correct classifications. Finally, the
evaluation is carried out by varying α12 [0.0025, 0.0100] with
a step of 0.0025, α22 [0.033, 0.100] with a step of 0.033, α32
[0.33, 1.00], with a step of 0.33, and using the tolerance
parameters ϵ and χ.

The results obtained are listed in Tables 2 and 3. The
following interesting trends can be observed:

· Table 2 shows first that both S2 and S3 increase with the
model error and the measurement noise, but the latter has
a much smaller negative impact on the performance. In
addition, it can be seen that increasing the tolerance
parameter ϵ reduces, in general, the rate of false unco-
operative classifications S2, but, at the same time, in-
creases that of false cooperative ones S3. Yet, the
increasing trend of S3 is almost one order smaller than
the decreasing trend of S2, which yields the nice property
whereby it is possible to increase ϵ to the extent nec-
essary to reduce S2, but at the same time not have a large
rate of false cooperative classifications S3, which are the
riskiest ones;

· Table 3 shows that both rates S2 and S3 grow with in-
creasing desynchronisation between monitors, with S3
growing slightly less than S2, although being still of the
same order. In addition, it should be noted that increasing
the consensus tolerance χ reduces S2, but at the same
time slightly increases S3. This reveals that synchroni-
zation among monitors plays an important role since the
more consensus nodes are synchronized, the better the
detection system works.

All in all, this second part of the evaluation has shown
that proper tuning of the tolerance parameters ϵ and χ gives
robustness to the realized detection system, and also that an
end-user can focus only on determining these two constants,
which are sufficient to collect the effects of uncertainty in a
macroscopic way.

6.3. Experiments on a real industrial plant

As a final step, the effective implementability of the
warehouse cooperation protocol P and the distributed
misbehavior detection algorithm is demonstrated within the
control system of commercial laser-guided vehicles
(LGVs), produced by the Italian company Elettric80 S.p.A.;
to this end, a representative industrial plant is recreated

Table 2. Warehouse case-study. Performance analysis with m =
10, ρ = 30%, and activated consensus, and with respect to the
model mismatch covariance norm α1, the noise covariance norm
α2, and the monitor tolerance ϵ.

False uncoop. False coop.

103α1 102α2 10ϵ Sm2 ð%Þ Sd2 ð%Þ Sm3 ð%Þ Sd3 ð%Þ

0.25 0.33 0.33 0.3 0.2 0.1 1.8
0.25 0.33 0.67 0.1 0.1 0.1 2.8
0.25 0.33 1.00 0.0 0.0 0.2 1.0
0.25 0.67 0.33 0.9 0.8 0.1 2.8
0.25 0.67 0.67 0.6 0.4 0.2 1.2
0.25 0.67 1.00 0.2 0.0 0.2 0.2
0.25 1.00 0.33 1.8 0.5 0.1 0.2
0.25 1.00 0.67 1.3 0.7 0.2 0.1
0.25 1.00 1.00 0.9 0.9 0.3 0.2
0.50 0.33 0.33 6.9 6.7 0.3 3.7
0.50 0.33 0.67 5.2 0.8 0.7 0.2
0.50 0.33 1.00 2.6 2.5 0.9 0.1
0.50 0.67 0.33 7.2 6.9 0.4 4.4
0.50 0.67 0.67 6.4 3.1 0.8 1.5
0.50 0.67 1.00 3.1 2.5 1.1 1.6
0.50 1.00 0.33 8.4 1.2 0.5 0.6
0.50 1.00 0.67 6.8 2.9 1.0 1.1
0.50 1.00 1.00 3.9 3.6 1.2 1.7
0.75 0.33 0.33 12.1 9.6 0.7 8.4
0.75 0.33 0.67 9.1 8.7 1.1 2.3
0.75 0.33 1.00 5.7 3.7 1.4 2.4
0.75 0.67 0.33 13.0 0.5 0.8 0.3
0.75 0.67 0.67 12.1 6.3 1.4 0.3
0.75 0.67 1.00 6.1 5.7 1.5 3.0
0.75 1.00 0.33 13.5 6.2 0.9 1.9
0.75 1.00 0.67 12.9 4.8 1.4 7.9
0.75 1.00 1.00 7.2 5.4 1.6 5.2
1.00 0.33 0.33 21.0 7.2 1.4 4.2
1.00 0.33 0.67 16.1 3.6 1.9 1.2
1.00 0.33 1.00 11.0 1.9 2.5 1.7
1.00 0.67 0.33 23.0 3.2 1.3 2.3
1.00 0.67 0.67 17.8 0.6 2.6 0.4
1.00 0.67 1.00 12.2 3.4 2.6 2.6
1.00 1.00 0.33 25.8 1.2 1.7 0.7
1.00 1.00 0.67 19.1 1.9 2.8 1.7
1.00 1.00 1.00 14.0 0.5 2.7 0.0

Table 3. Warehouse case-study. Performance analysis with m =
10, ρ = 30%, and activated consensus, and with respect to the
monitor desynchronization covariance norm α3 and the consensus
tolerance χ.

False uncoop. False coop.

α3 χ Sm2 ð%Þ Sd2 ð%Þ Sm3 ð%Þ Sd3 ð%Þ

0.33 0.33 1.2 0.2 2.0 0.6
0.33 0.67 0.1 0.1 1.6 0.8
0.33 1.00 0.0 0.0 2.1 2.0
0.67 0.33 4.8 2.1 2.6 0.5
0.67 0.67 3.6 0.1 2.7 2.3
0.67 1.00 1.2 0.3 3.2 0.9
1.00 0.33 8.6 0.5 4.1 2.7
1.00 0.67 6.2 2.2 5.2 1.9
1.00 1.00 2.5 0.1 6.1 2.4

Fagiolini et al. 2165

where three LGVs that move from starting cells, where
virtual stretch-wrappers are located, to final cells with
storage points where pallets are collected. Each LGV is
characterized by the dynamics map fi of a unicycle robot
and has a steering low-level controller that allows it to
keep on the path and move at a desired speed, and that
represents the decoder map ui of the proposed approach;
being a commercial vehicle, the decoder is a black box
implemented on a Beckhoff TwinCAT3 platform. On top
of it, a supervisory control framework is available and is
open to be programmed in C# for high-level control of
the vehicle. Using data from local proximity sensors,
laser measurements for triangulation, and a WiFi con-
nection to a base station, the supervisory control can
implement the functions of the encoder map si, detector
map ei and automaton map δi, thus realizing the coop-
erative strategy seen above for collision avoidance.
Specifically, each LGV has a path consisting of a number
of adjacent cells to which it must negotiate access
through communication with the other two LGVs. After
implementing the last three maps and using the compiled
object of the decoder map ui, the local monitor Mh has
been generated through the rules presented above and the
tool in Appendix D, its code has been compiled for the

available target processor and then connected to the
Beckhoff TwinCAT3 system.

In the experiment reported in Multimedia Extension 1
(described in Table 6 in Appendix A), the three LGVs are
assigned with paths whose description in terms of cells and
macro-cells, some of which are shared, are transmitted to
them by the base station. In their absence of misbehavior,
each LGV cooperatively executes the social rules, thus
avoiding collisions, and reaches its assigned storage point
before returning to its starting cell. In the experiment, one
LGV is affected by a control system failure that causes it to
stop as soon as it reaches the first shared cell, thus causing
the system to stall (this can be seen in the first part of the
Extension). Then, the remaining two correct LGVs co-
operatively detect the misbehavior through their local
monitors and consensus nodes; after agreeing on the
misbehavior, they temporarily exclude the fault LGV,
renegotiate access to the shared cells, and solve the
deadlock (this is visible in the second part of the Exten-
sion). Finally, assuming that the faulty LGV control
system is restored, either through human intervention or a
remote reset, the LGV asks to be readmitted to the co-
operation protocol and, once access is granted, can start
moving and complete its mission (last part of the

Figure 4. Warehouse case-study. Highlights from the experiment with three commercial LGV within a representative industrial plant.
The onboard low-level control of each LGV is encapsulated via software as a black box to represent the decoder map of the system; the
supervisory control system is programmed in C# for high-level control of the vehicle to implement the functions of the encoder map si,
detector map ei and automaton map δi. Once the source code of these three components is written, the local monitor and consensus nodes
are generated via the tool described in Appendix D and then linked with the object code of the decoder map to the Beckhoff TwinCAT3
target machine. Experiments have been performed at the premises of the Italian company Elettric80 SpA.

2166 The International Journal of Robotics Research 43(14)

Extension). Some highlights of the experiment are re-
produced in Figure 4.

A final indicator to demonstrate the actual applica-
bility of the proposed method in a real system is CPU
utilization. In this regard, the Elettric80 company has
proprietary software that allows emulation of the be-
havior of a team of LGVs, each controlled by the very
same software that is present on the real hardware
platforms. In practice, the software simulates the physical
dynamics of the LGVs, including various forms of un-
certainty, and it collects and sends the simulated signals
to the actual control boards on which the coordination
algorithm and the misbehavior detector generated by the
presented tool are running. This enables the construction
of a dataset of virtual evolutions of the robots, but also the
access to data such as CPU utilization during all phases of
operation.

For this purpose, a dataset of 27 emulations has been
generated, with three LGVs moving within the virtual
layout of the above-used industrial plant. Each emula-
tion differs by a different assignment of paths to the

LGVs. Each LGV has on board two processes: one for
the control of its motion and one that monitors the other
two LGVs. The CPU utilization of the control and
misbehavior detection processes has been measured. To
realign the time spans of all emulations, their durations
have been truncated to the shortest one (after verifying
that no significant information would be lost). Analysis
of the resulting data is shown in Figure 5, from which it
can be noted that the CPU usage of the detection process
is approximately twice larger than that of the coordi-
nation process; however, both processes have very low
CPU occupancy. These two aspects ultimately show the
effective implementability on the platform, as well as
the availability of room for implementing further
functions.

7. Other applications of the method

7.1. The motorway case-study

In this section, a second case study presents an auto-
motive scenario with n cars traveling along a motorway
with m lanes. To avoid collisions and reach their desti-
nations, cars must adhere to European traffic rules, as
summarized here. Each car, represented asAi, possesses a
desired travel speed denoted as vdi . The driver of each car
must perform specific actions, including accelerating ðFÞ,
decelerating ðSÞ, changing lanes to the left ðLÞ or right
ðRÞ, or entering a platoon ðPÞ. Intuitively, when Ai ap-
proaches a slower car Aj in front and the left lane is
unoccupied, it should transition from acceleration ðFÞ to
the sequence L, F, R to overtake on the left. If the left lane
is occupied by another car Ah, Ai must switch to S.
Furthermore, if Aj in front has a similar desired travel
speed, vdj , Ai should switch to P and adjust its velocity to

match that of the preceding car, vdj . The rest of this section

formalizes the cooperation protocol and shows how the
suggested method enables the discovery of vehicle

Figure 5. Warehouse case-study. Analysis of the CPU usage from the emulation of 27 settings with commercial LGVs within a
representative industrial plant (in the legend,Hi is the ith process controlling the motion of the LGV, while Mi is the ith ensemble of
the local monitor and the consensus node). The temporal behavior of the average and standard deviation values are graphically depicted.
The CPU usage of the sensing process is about twice as high as that of the motion process. Yet, both processes have very low CPU
occupancy, which demonstrates effective implementability on the platform.

Figure 6. Motorway case-study. Illustration of the first four
topologies of a car A0 (above) and the visibility of a monitor
onboard on A3 (below).

Fagiolini et al. 2167

misbehavior. We assume that agents are subject to a
maximum error of 10% and have tuned ϵ accordingly.

Formally, the cooperative protocol P can be found as
follows, referring without loss of generality to Figure 6. The
ith continuous state is qi ¼ ðxi, yi, θi, vi, vdi Þ, with xi and yi its
longitudinal and lateral positions, θi is its steering angle, vi is
its longitudinal speed. Denoting by df and db the forward
and backward safety distances, the ith set of topologies is as
follows: ηi,1(qi) is the front region, extending from xi for-
ward by df; ηi,2(qi) is the region on the next left lane, ex-
tending from xi backward by db and forwards by df; ηi,3(qi) is
the similar region on the right; ηi,4(qi) is the rear region
extending from xi downwards by db; ηi,5(qi) is a further rear
region extending downwards by dint, indicating the region
of interaction with cars approaching from behind. Formally,
denoting with q = (x, y, θ, v, vd) a generic point inQ, they are
described as follows:

ηi, 1 :Q→ PowðQÞ

qi1fq��x2 �xi, xi þ df

,

y2
hjyi
w

k
w,
�jyi

w

k
þ 1
�
w
io

,

ηi, 2 :Q→ PowðQÞ

qi1fq��x2 �xi � db, xi þ df

,

y2
h�jyi

w

k
þ 1
�
w,
�jyi

w

k
þ 2
�
w
io

,

ηi, 3 :Q→ PowðQÞ

qi1fq��x2 �xi � db, xi þ df

,

y2
h�jyi

w

k
� 1
�
w,
jyi
w

k
w
io

,

ηi, 4 :Q→ PowðQÞ

qi1fqjx2 ½xi, xi þ dint�,

y2
hjyi
w

k
w,
�jyi

w

k
þ 1
�
w
io

,

ηi, 5 :Q→ PowðQÞ

qi1fqjx2 ½xi � dint, xi�,

y2
hjyi
w

k
w,
�jyi

w

k
þ 1
�
w
io

,

where w is the width of a lane, P�R is the closest lower
integer, and dint the interaction distance. In addition, the
following topologies are the front, back, and right regions
possibly populated by other vehicles with similar desired
speeds:

ηi, 6 :Q→ PowðQÞ

qi1fqjx2 ½xi, xi þ dint�,

y2
hjyi
w

k
w,
�jyi

w

k
þ 1
�
w
i

vd 2
�
ð1� fÞvdi , ð1þ fÞvdi

�
,

ηi, 7 :Q→ PowðQÞ

qi1fqjx2 ½xi � dint, xi�,

y2
hjyi
w

k
w,
�jyi

w

k
þ 1
�
w
i

vd 2
�
ð1� fÞ vdi , ð1þ fÞvdi

�
,

ηi, 8 :Q→ PowðQÞ

qi1fqjx2 ½xi � dint, xi�,

y2
h�jyi

w

k
� 1
�
w,
jyi
w

k
w
i
, vd ≤ ð1� fÞ vdi

o
,

where f 2 (0, 1] is a speed similarity constant. Then, the
ith neighborhood is N i ¼ [8

l¼1 ηi,lðqiÞ and it is assumed
that N i � Vi. The protocol also requires the constants:
η*
i, 1

and η*
i, 2

as the left- and right-most lanes, η*
i, 3

and η*
i, 4

as the left and right edges of the current lane, and η*
i, 5

as

the ith car being aligned with the center of the current
lane; they are formally given by:

η*
i, 1

¼ fqjy2 ½ðm� 1Þw,mw�g,

η*
i, 2

¼ fqjy2 ½0,w�g,

η*
i, 3

¼ fqjy ≥ ðbyi½k�=wc þ 1Þwg,

η*
i, 4

¼ fqjy ≤ ðbyi½k�=wcÞwg,

η*
i, 5

¼
n
q
������y� jy

w

k
w� w

2

��� ≤Δy, jθj ≤Δθ

o
,

with Δx and Δy being tolerance parameters. The ith
encoder map Vi then is si :Q ×Qni →B

13, with si = (si,1,
…, si,13). The ith visibility map returns the region of Q
that lies within a distance Ri and is not hidden by other
cars (cf. the sweeping line algorithm in Thrun (2002)
and Figure 7 for examples).The ith discrete state set is
Σi ¼ fF, S, L, R, Pg. All events, the detector map ei, and
automaton δi are listed in Table 4.

The ith decoder map ui :Q ×Σi ×Qni →U i, ui = (ai, ωi)
computes suitable feedback laws through the linear accel-
eration and angular speed, given the current maneuvers.
Inspired by Solyom and Coelingh (2013), in order to allow
Ai to execute a platoon maneuver one must distinguish
whether Ai is: ① in the middle, ② the last car, ③ the leader
car, and④ kept in a platoon temporarily, as the next left lane

2168 The International Journal of Robotics Research 43(14)

is occupied. Denote with a> 0 an acceleration, xf, vf, xb, and
vb longitudinal positions and speeds of the preceding and
following car, and bb, bf, γ, kl, and d suitable positive
constants. Denote also the abbreviations: xbi ¼ xi � xb,

xfi ¼ xi � xf , vbi ¼ vi � vb, vfi ¼ vi � vb, vdi ¼ vi � vd .
Then, the acceleration command is

ai :Q ×Σi ×Q
ni →R

ðqi, fF, L, Rg, IiÞ1
(
a if vi < vdi ,

0 otherwise,

ðqi, S, IiÞ1
��a if vi > 0,

0 otherwise,

ðqi, P, IiÞ1

�bb
	
xbi þ γvbi

� bf

	
xi
f þ γvi

f

if ①,

�bf
	
xi
f þ d þ γvi

f

if ②,

�bb
	
xbi � d þ γklvdi

if ③,

�bb
	
xi, b � d þ γvbi

þ

�bf
	
xi
f þ df þ γvi

f

 if ④,

8>>>>>>><>>>>>>>:
and the angular speed command is

ωi :Q× Σi ×Q
ni →R

ðqi, fF, S, Pg, IiÞ1
�
ðy*

i
� yiÞ

sin θi
θi

� μ θi

�
vi,

ðqi, L, IiÞ,1
(
ω if θi < θmax

0 otherwise
,

ðqi, R, IiÞ1
(
�ω if θi >� θmax

0 otherwise
,

where y*
i
¼ ðbyi=wc þ 1=2Þw is the current lane center,

θmax isAi ’s maximum curvature angle, μ and ω are suitable
positive constants ensuring stability. The expression of ωi

for the maneuvers F and S is obtained using the Lyapunov

function V ¼ 1=2ðy*ðqiÞ � yiÞ2 þ 1=2θ2i . The ith dynamics
map fi :Q ×Σi →TanðQÞ is as in Section, with an additional
null component for the desired travel speed.

Some examples of motion misbehavior that can be dis-
covered with the proposed methodology are described below.
For this purpose, the cooperation protocol is implemented
using the software tool described in Appendix, and local
monitors and consensus nodes are automatically generated and
compiled. In Figure 8(a) four cars have different desired speeds
so that the P maneuver is never triggered. CarA0 performs an
uncooperative behavior by keeping an F maneuver in the
second lane when the next lane to its right is free; according to
Pi, the car should start an Rmaneuver to return to the first lane.
The behavior of A0 performing an F maneuver in the second
lane requires that part of the regionA0, 3 is occupied by at least
one other car. Three local monitors try to determine whether
this condition is true, notwithstanding their partial visibility.
Figure 8(b) illustrates the three estimated occupancy maps, I10 ,
I20 , and I30 , reconstructed by the local monitors; the figure
shows that only the local monitor on board carA3 successfully
discovers the inconsistency, while the other two monitors do
not. The third monitor immediately classifies A0 as
uncooperative and the other two as possibly-cooperative.

To continue, in Figure 9, car A1 is subject to the
same misbehavior and four local monitors use the set-valued
consensus in Theorem 2, which allows them to agree on

Table 4. Motorway case-study: events ei,j, Detector map ei, and
automaton δi. Self-transitions (e.g., F→F) are omitted for brevity,
as they occur in the absence of triggering events.

Event Detection condition Transition

ei,1 si,1 si,2 ¬si,6 si,13 F→ S
ei,2 si,1 ¬si,6 si,11 si,13 F→ S
ei,3 si,1 ¬si,7 ¬si,13 F→ S
ei,4 ¬si,1 si,3 si,6 ¬si,8¬si,10 F→ S
ei,5 si,1 ¬si,2 ¬si,6 ¬si,11 si,13 F→L
ei,6 ¬si,1 ¬si,3 ¬si,10 si,13 F→R
ei,7 ¬si,1 si,9 S→ F
ei,8 ¬si,1 ¬si,3 S→ F
ei,9 si,1 ¬si,2 ¬si,11 si,13 S→L
ei,10 ¬si,7 si,12 L→ F
ei,11 ¬si,7 si,13 R→ F
ei,12 ¬si,10 ¬si,7 P→ F
ei,13 ¬si,3 ¬si,4 si,5 si,9 P→ F
ei,14 ¬si,1 si,3 ¬si,8 P→ S
ei,15 si,1 ¬si,2 ¬si,6 ¬si,11 P→L
ei,16 si,10 L→ F
ei,17 si,3 si,7 F→ P
ei,18 si,1 si,2 ¬si,6 si,7 F→ P
ei,19 si,1 ¬si,6 si,7, si,11 F→ P
ei,20 si,10 si,12 L→ P
ei,21 si,10 si,13 R→ P

Figure 7. Examples of visibility regions: (a) complete scenario,
(b) gray regions are not visible by A1 and A4.

Fagiolini et al. 2169

the centralized estimate of the occupancy map η1 ¼
)h2f2, 3, 4, 5gηh1. The available communication graph is
G1 ¼ ðW1, E1Þ, with W1 ¼ f2, 3, 4, 5g and E1 ¼ f2→
w2 ¼ f2, 3, 5g, 3→w3 ¼ f2, 3, 4g, 4→w4 ¼ f3, 4g, 5→
wh ¼ f2, 5gg. G1 is connected and diamðG1Þ ¼ 3. The in-
stance of set-valued consensus is Xhðκ þ 1Þ ¼)l2whXlðκÞ,
for all h2W1. Figure 10 reports the consensus evolution
and shows how the four local monitors successfully consent
on the centralized estimate η1 in three steps.

Finally, consider Figure 11(a) where the desired speeds
of all cars are similar and a P maneuver is triggered. Here,
the output of the decoding map ui depends on the positions
of the preceding and following cars. Thus, each local monitor
must consider the exact positions of possible hidden cars.

Assuming that no more than one car can be found in the hidden
portion of each topology, an equally spaced grid is applied to
such a portion. Car A4 performs an uncooperative behavior,
switching from an S to an F maneuver, regardless of the fact that
there is no vehicle in front of it, whereas a P should be per-
formed. A local monitor onboard A0 calculates an estimated
occupancymap I04 andmerges it via a set-valued consensuswith
that one of its own neighbors monitor onboardA5. Figure 11(b)
shows how A4 is first classified as possibly-cooperative and
then as uncooperative. Note that, after every consensus step,
estimated hidden cars are only kept in a narrower area (gray
region), due to the cut of the tolerance ϵ, which removes all the
predictions too far from the measured data. Finally, note in
Figure 11(c) how a local monitor onboard A6 can correctly
classify the behavior of another car A3 as cooperative.

7.2. The power grids case-study

In this section, a final case study involves a power grid
system with a distributed controller Zeng (2015) and its
purpose is to show that the methodology is not limited to
self-driving systems. A power grid network comprises
many nodes/agents, each of which is a power machine
requiring synchronization. The continuous state of the ith
power machine and its stabilizer is qi = (δ, ω, V, xc), with δ a
phase angle, ω an angular speed, Va voltage and xc the state
of the controller; the ith decoding map is ui = (up, uc) where
up is the control voltage of the power machine and uc that of
the stabilizer. The ith dynamics map is

fi :Q×U i × Pow Qð Þ→Tan Qð Þ
qi, ui, Iið Þ1

�
ω, �aωþ c, �V

�X
j

Ci, j, up
�
, uc
�
,

where index j runs for all Ai-neighbors and Ci,j = VjZ sin
(δi � δj + α), with a, c, Z, and α machine-dependent
constants. The ith discrete state set is Σi = {σ1, σ2, σr},
the first two of which are the modes where the controller
tends to correct V to a nominal value V*, while in the third
one, a flush/reset mode is activated to prevent the controller
from removing too much energy from the power machine.
Referring to a generic state q = (δ, ω, V, xc), the cooperation
protocol uses the following constants topologies:

η*
i, 1

¼ fqjxcðV � V*Þ> 0g, η*
i, 2

¼ fqjx2c > ðV � V*Þ2g,
η*
i, 3

¼ fqjjxcj< ϵg, where ϵ is a small constant to be suitably

choose. Accordingly, the ith encoder map is si = (si,1, si,2,
si,3). All events, the detector map ei, and automaton δi are
listed in Table 5. Denote Di,j = �(xc,i � xc,j) sign (ΔV ΔS),
ΔV ¼ x2c, i � x2c, j, and ΔS = xc,ixc,j. The ith decoder map is

ui :Q×Σi ×Qni →U i, ui = (up, uc), with

up :Q×Σi ×Qni →R

qi, σ
1, Ii

	

1� l1 xc,

qi, σ
2, Ii

	

1l1 xc,

qi, σ
r, Iið Þ10,

and

Figure 9. Motorway case-study (#2). Centralized estimate η1
revealing the behavior of A1.

Figure 8. Motorway case-study (#1). (a) Misbehaving carA0 is in F
in the second lane regardless that the next lane on its right is free. (b)
Estimated occupancy maps ηh0, for h = 1, 2, 3; only carA3 discovers
the uncooperative behavior of A0 (red circle), while the other two
monitors remain uncertain to possibly-cooperative (yellow circle).

2170 The International Journal of Robotics Research 43(14)

uc :Q× Σi ×Qni →R

qi, σ
1, Ii

	

1l1

	
V � V*

þ jDi, j,

qi, σ
2, Ii

	

1� l1

	
V � V*

þ jDi, j,

qi, σ
r, Iið Þ1� A xc:

Two examples of misbehavior are now considered in a
network of five power machines, using the numerical values
(Zeng, 2015): a = 0.625, c = 52.2556, Z = 51.2579, α = 0.113,
ϵ ¼ 10�4, l1 = 1, A = 100. To begin with, assume that the first
four machines operate correctly at a nominal voltage V* =
1.4941, while the fifth wrongly drifts to V (0) = 1.2 due to a
voltage peak. The initial conditions of the correct power
machines are δ(0) = 0.0,ω(0) = 1.033,V (0) = V*, and xc = 0.0,
and that of the fifth machine differs for V(0). All machines
operate initially in the discrete state σ1. The localmonitor is run
on the very same machine with a predicting horizon of 0.7 s,
and a noise error of 1% affects themeasurement ofV. Figure 12
shows in the first row the predictions obtained for all discrete
states and reveals how the misbehavior is discovered. To
continue, assume now that the controller of the fifth machine
has a temporary failure described as a unitary pulse signal in up
for t 2 [0.05, 0.15] seconds, which again results in a voltage
spike. Figure 12 shows that all predictions differ significantly
from the measured data, although they are not distinguishable
from each other. Yet, they allow the misbehavior to be

Figure 11. Motorway case-study (#3) (a) scenario with a platoon
where a carA4 wrongly switches from S to F; (b) a local monitor
on A0 reconstructs the estimate η04 (blue dots are possible
A0-neighbors) (above), and merges it with that of A5, thereby
discovering the non-cooperation (below). (c) A local monitor on
A6 correctly classifies A3 as cooperative, after merging its
estimate η63 with that of a local monitor on A0.

Table 5. Power grid case-study: events ei,j, detector map ei, and
automaton δi. Self-transitions are again omitted for brevity.

Event Detection condition Transition

ei,1 ¬ri,1 σ1 → σ2

ei,2 ri,2 {σ1, σ2} → σ3

ei,3 ri,1 σ2 → σ1

ei,4 si,1si,3 σr → σ1

ei,5 ¬si,1si,3 σr → σ2

Figure 10. Motorway case-study (#2) - Consensus run. Each row refers to a different local monitor indicated by a blue circle, while each
column is a different consensus step. The misbehavior is initially undetected by any local monitor, but is finally discovered after
monitors consent on η1 (a yellow circle indicates possibly-cooperative, while a red one uncooperative).

Fagiolini et al. 2171

detected, even though no unique value is reconstructed for the
discrete state.

8. Conclusion and discussion

This work focused on the problem of misbehavior de-
tection in socially organized robotic agents. A new
framework was proposed that allows social rules to be
formally embedded in the definition of agent models. The
framework is general and applies to several domains,
from electrical machines to automotive systems, and,
most importantly, it allows for the automatic generation
of monitoring and agreement processes, which are exe-
cuted on board each agent and allow for socially-agreed
detection of the misbehavior of their neighbors. The
effectiveness and robustness of the proposed detection
methodology were shown in simulation and experi-
mentally. The rest of the section describes how the
computational complexity of the approach scales with
social rules and a list of other relevant observations.

8.1. Complexity and scalability analysis

Before delving into the evaluation of the complexity and
scalability of the proposed approach, it is worth clarifying
that the cooperation protocol P represents a convenient
description framework, made of eight “containers”, Ti, Vi,
Ei, Γi, Σi, δi, ui, fi, which are combined in such a way as to
allow systems with rich behaviors to be described in a
quite flexible and modular way. In general, the com-
plexity of these components results from the richness of
the behaviors that the considered multi-agent system has.
Based on this, the complexity of the monitor and con-
sensus nodes are evaluated against that of the elements
of P.

8.1.1. Local monitor. To begin with, in order to assess the
computational cost of each iteration of monitor Mh, one

needs first to break down the specific complexity of each
involved component as follows:

· Computing map vi. Each component vi,j needs checking
if the (i, j)th topology is in Vh; denoting with Cv

i, j the cost
of such set inclusion test, the total cost is bounded by
Oððκi þ hiÞCv

i Þ, where Cv
i ¼ maxjfCv

i, jg.
· Computing map Δi. The nondeterministic automaton Δi

involves by (14) computing the automaton δi for every
pair of predicted discrete state and event; denoting with
Cδ
i the cost of the latter automaton, the total cost is

conservatively bounded by ðriνiCδ
i Þ, where ri and νi are

the cardinality of Σi and Ei.

· Generating the extended input set bIhi . A suitable dis-
cretization scheme must be adopted to sample the
hidden portion of the (i, j)th topology; note that this
element is necessary only when the decoder map ui
also depends on the configurations ofAi-neighbors; its
total cost is OðαÞ, where α is the maximum number of
sampling points.

· Computing mapbsi. Each componentbsi, j needs checking if
the continuous state of any agent Aj, that is visible from
Ah, is in the (i, j)th topology; denoting with Cs

i, j the cost of

the (i,j)th topology membership test, the total complexity is
bounded by Oððκi þ hiÞCs

i Þ, with Cs
i ¼ maxjðCs

i, jÞ.
· Computing map bei. This map requires the indexing of νi

truth tables, one for each binary function of the input
vector bsi, thus leading to a total cost that is OðνiÞ.

· Computing the occupancy estimator map ηhi . In the worst
case, κi set differences need to be computed between ηi,j
and Vh (note that the test needs to be only done for the
first κi components as the remaining ones are constant
and already known to Mh), thus yielding a total cost of
OðκiCo

i Þ, where Co
i is the cost of a single set difference.

Based on these component costs, the kth iteration of
monitor Mh involves the following:

Figure 12. Power grid case-study: (first row) The first four power machines operate correctly at Vi = 1.4941, while the fifth one (whose
state evolution is reported here) is affected by a system failure causes its voltage to drop to V5 (0) = 1.2; the predictions of the local
monitor (reported for all continuous and discrete states) shows that the misbehavior is discovered. (second row) The controller of the fifth
power machine fails and generates a unitary pulse in the signal in up for t 2 [0.05, 0.15] seconds, which causes a temporary voltage spike;
the misbehavior is detected even though the discrete state is not uniquely identified.

2172 The International Journal of Robotics Research 43(14)

· Executing a prediction phase. In this phase, a forward

integration of the controlled dynamics set map F*i
starting for all qi,α must be performed, contributing with

a complexity of OðαCf
i Þ, along with a one-step calcu-

lation of the nondeterministic automaton ~δi, which adds
the cost of OðνiCδ

i Þ; in addition, the evaluation of the
forward link map Li is constant because it involves only
the storage of a bidirectional pointer into the list. Thus,
the overall complexity of the prediction phase is

OðαCf
i þ νiCδ

i Þ.
· Executing an update/matching phase. Here, at most α

pair-wise tests of ϵ-similarity between bqi, αðtÞ and
~qmeas
i ð0,ΔÞmust be performed that are necessary because

of the operator)ϵ; also, an execution of the occupancy
estimator has to be done. Hence, denoting with Cϵ

i the
cost of each pair-wise comparison in)ϵ, the overall
complexity of this phase is OðαCϵ

i þ κiCo
i Þ.

Putting all together, it can be established that the total
computational cost of each iteration of Mh is

ðαðCf
i þ Cϵ

i Þ þ νiCδ
i þ κiCo

i Þ, which scales linearly with the
complexity of the components fi and δi. A remark should be
made about parameter α that depends on the sampling
scheme: a naive uniform sampling generally leads to high
values of α; these values can be much reduced, with a prior
analysis of the cooperation protocol P via simulation by
finding a trade-off between accuracy and computation cost,
which is beyond the scope of this work.

8.1.2. Consensus node. A final observation concerns the
complexity and scalability of the set-valued consensus. First
of all, it should be noted that the set-valued consensus
algorithm starts after each time that the local monitor Mh

has calculated an estimated occupancy map ηhi . Therefore, it
does not depend on the number of Ai-neighbors nor the
complexity of the dynamics, decoder, automaton, and en-
coder maps and on the number of events because all these
entities have already been accounted for to produce the
above estimate.

Another relevant parameter is the number m of local
monitors participating in the social agreement. In this re-
gard, it was shown in Theorem 2 that the convergence
towards the centralized estimate occurs, under the as-
sumption that the communication graph Gi is connected,
within a number of steps equal to its diameter κ ¼ diagðGiÞ.
Thus, on the whole, the execution of the entire consensus
requires each robot to execute at most κ steps; this number is
by definition bounded by the number of nodes, i.e., κ≤m,
although the equality happens when Gi degenerates to a line.
In this respect, it should be noted that current mobile
communication technologies (such as those used in
MANETs and VANETs) make this occurrence very un-
likely. Hence, it can be said that the consensus algorithm
scales, in general, linearly with the number of monitors, but
its dependence is, in practice, sub-linear.

A final aspect is related to the number of topologies κi +
hi and the granularity with which the occupancy estimates
obtained from each local monitor are represented. Con-
cerning the first parameter, the hth component Xh of the
collective state contains at most one list of subsets of Q for
each (i, j)th topology; thus leading to a linear dependence on
the sum κi + hi. With regard to the second parameter, the
following should be noted. From a mathematical point of
view, the intersection operations involved by the operator)
are to be performed in the continuous space Q; in this way,
the calculation is more efficient, and the result is typically of
less complexity: starting from any two complex sets, the
number of subsets resulting through the intersection typi-
cally tends to diminish. However, a precise value cannot be
found as it depends both on the complexity of the regions
represented by each (i,j)th topology and the visibility
condition of each local monitor. A practical assumption
leading to a worst-case qualitative evaluation is to assume
that each (i,j)th topology is discretized into sub-areas and
that) is applied to the finite number Cη of all such ele-
ments; after every consensus step, the number of elements is
at most Cη, and thus the overall consensus algorithm scales
Oððκi þ hiÞCηÞ.

8.2. Other relevant observations

Firstly, this work has not addressed the automatic generation
and verification of social rules from a set of specifications
for a multi-robot system. As is well known, these problems
are orders of complexity higher than proving theorems
(Cook, 1971). Here, the logical conditions of the given
specifications do not have a finite number of input com-
binations, which can, at least in theory, be enumerated
combinatorially; conversely, they depend also on time
(Kress-Gazit et al., 2009; Platzer, 2010; Rungger et al.,
2013) in an implicit way, through the nonlinear evolution of
the components of all robots. This makes the enumeration of
all cases that may occur impractical, because it would be too
computationally expensive, or incomplete, if interrupted
after a large number of enumeration steps.

Secondly, dealing with corrupted messages that are ex-
changed by consensus nodes and that contain false information
is another challenge that is, however, beyond the scope of this
work. Currently, the integrity and authenticity of messages can
be ensured by the use of digital signature-based techniques,
which protect against fake messages generated and injected by
an external intruder, i.e., an external entity pretending to be a
legitimate consensus node (Raya et al., 2006). The problem
becomes more complicated if an actual member of the group
generates the messages. To date, the integrity of the on-board
software can be ensured using Trusted Computing Platforms
(TCP) (England et al., 2003; ISO Central Secretary, 2009,
2015); these platforms rely on a hardware component with
built-in tamper-resistance; they have been standardized in two
phases (ISO Central Secretary, 2009, 2015) and are now
commercially available (cf., e.g., Infineon’s OPTIGATPC 2.0)

Fagiolini et al. 2173

for use in the automotive and mobile robotics sectors (Hoeller
and Toegl, 2018; Petri et al., 2016; Schneider et al., 2017;
Sumra et al., 2011); in addition, swarm attestation techniques
can be used to verify software integrity on cooperating cyber-
physical devices in a scalable and secure manner (Ambrosin
et al., 2016; Asokan et al., 2015; Wedaj et al., 2019). In the
absence of these solutions, tolerating inconsistent messages
that could spread is still an open problem; Bicchi et al. (2008)
presented a preliminary study into it.

A third aspect is related to the counteractions to imple-
ment in response to the detection of an uncooperative robot.
In sensor networks, a selfish node that does not forward
received messages according to the routing protocol, as well
as a node that sends inauthentic or compromised messages,
can be isolated by invalidating its cryptographic key and
discarding its future messages (Pfleeger et al., 2015). Here,
because a robot is a physical system that shares the envi-
ronment Q with its neighbors, deciding what counteractions
to implement in order to escape from or be resilient to an
uncooperative robot is arbitrarily complex since logical
disconnection from communications is not sufficient: in the
warehouse example, a stuck forklift requires redefining the
priorities so as to allow other forklifts to overtake it, but in the
motorway scenario, a vehicle moving erratically along the
road requires a more involved reaction. Possible solutions
may involve encoding counteractions directly into the co-
operation protocol P or activating another protocol P0

that is
specifically designed to mitigate the effect of an adversary
attack. In this work, the activation of counteractions was not
considered, as this topic is beyond the scope of this paper. In
fact, the work focused on providing a formalism for the
modeling of socially organized robots, providing a theoretical
basis for the development of a distributed misbehavior de-
tector, and enabling the development of a computer tool for
the automatic generation of the detection code.

Additionally, the considered protocols are characterized
by an intrinsic locality of information, entailed in the
definition of each ith neighborhood, which generally pre-
vents the occurrence of cascading phenomena in the mis-
behavior detection. For example, a vehicle in the leftmost
lane proceeding slowly, as well as a vehicle constantly
changing lanes unjustifiably, may slow down the entire
traffic and thus have a non-local impact on performance.
This is generally not the case for the misbehavior detection
problem, as a monitor has to determine whether a robot Ai

performs behaviors that conform to Pi and are consistent
with the instantaneous value of its neighborhood N i. Thus,
a generic uncooperative robotAj, which is a neighbor ofAi

and is observed by monitorMh, will be classified according
to the data available for Mh; meanwhile, as long as Ai

continues to perform cooperative behaviors, monitor Mh

will classify it as possibly or certainly cooperative. Con-
sider, e.g., a correct car A0 in the motorway scenario.
Assume that A0 is traveling in the second lane to overtake
another car A1; suppose A1 mistakenly moves into the
second lane, violating the minimum distance constraint
from A0, which is approaching from behind. The correct

vehicle A0 then switches to braking mode and slows down.
Consistently, all neighboring monitors will evaluate A0 ’s
behavior as (possibly) cooperative.

To further understand the generality of the proposed
method, consider three robots and a human operator that
need to grasp and move a deformable yet fragile object
cooperatively. Assume that the four agents approach and
grasp the object from one side each and that only adjacent
agents can communicate with one another. The proposed
approach can model this system and, thereby, allow the
misbehavior of any of these four agents to be discovered. In
this respect, intuitively, the complex physical dynamics of
the robots and the human can be described by dynamic maps
fi, with i 2 Z = {robot-1, robot-2, robot-3, human}; the sets
of controllers allowing them to carry out different actions,
i.e., approach the object, establish safe contact, and effec-
tively grasp it and move it, can be described by decoding
maps gi, with i 2 Z; the conditions of proximity of each
agent’s end-effector to the object and those that ensure force
closure on the object without its damage can be modeled by
four sets of topological maps ηi,j, with i2 Z; finally, the logic
by which each agent switches between one action to another
can be included in the encodingmaps eiwith i2 Z. Then, the
ability of each robot to measure its own continuous state
(including its joint and end-effector states), the contact force
with the object, and the end-effector positions of the two
adjacent robots or of the nearby human operator can be
described by three visibility maps, Vrobot-1, Vrobot-2, and
Vrobot-3; likewise, the ability of the human operator to
measure its own continuous state and to estimate the contact
force with the object along with the end-effector positions of
the two adjacent robots is modeled in a fourth visibility map
Vhuman. Furthermore, misbehavior of any of the four agents,
such as the application of contact forces that are too small or
too large, due to incorrect regulation of their end-effector
position, can be discovered via monitor and consensus
nodes automatically generated through our approach. This
allows solving such a task even when no single agent has
enough information to detect the misbehavior, which occurs
since agents cannot simultaneously measure all other end-
effector positions; in this context, first, local monitors en-
able every single agent to obtain continuous sets repre-
senting possible force ranges, and then, consensus nodes
allow to combine them iteratively and to finally discover the
possible misbehavior.

It should also be noted that existing solutions are, in
theory, applicable to specific scenarios in which the co-
operative model is linear, the event maps are linear, or there
is only one robot, etc. However, a performance comparison
between the present solution and any of them can only be
made on a case-by-case basis.

In conclusion, one main reason for adopting the pro-
posed method is that it is the only tool that integrates at least
the following features into a unique solution: (1) the ability
to describe socially organized cooperative multi-agent
systems, with possibly nonlinear physical dynamics, dif-
ferent types of nature (mechanical, hydraulic, electrical,

2174 The International Journal of Robotics Research 43(14)

cyber-physical, etc.) and rather general rules of interaction;
(2) the ability to automatically generate the code for local
monitor and consensus processes that do not require
knowing the internal expressions of the agents’ dynamics
and controllers. The first feature is achieved through the
adoption of the cooperation protocol P, which enables
behavior richness and flexibility to be made available for the
user, who can decide how to decompose the model into its
components. The second feature builds upon the inherently
modular nature of P and is fundamental, since the functions
appearing in the decoder maps are typically part of a closed
software library, provided by robot manufacturers or control
developers, and can only be invoked as black boxes. In this
regard, the proposed solution implements the idea of en-
hancing safety and security in multi-robot systems through
rule-based cooperation, which has been advocated for at
least three decades (see, e.g., the seminal work by Shoham
and Tennenholtz (1995). It allows model components to be
easily changed and reused, which also makes it helpful in
analyzing the threats and weaknesses of a multi-agent
system, even before its actual implementation.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work has been funded by Project SELF4COOP (Self-optimizing
Networked Edge Control for Cooperative Vehicle Autonomy),
funded by Italian MUR PRIN 2022 under grant number
2022SKLZAY.

ORCID iDs

Adriano Fagiolini https://orcid.org/0000-0001-9943-1975
Antonio Bicchi https://orcid.org/0000-0001-8635-5571

Supplemental Material

Supplemental material for this article is available online.

References

Agarwal S, Vora A, Pandey G, et al. (2020) Ford multi-av seasonal
dataset. The International Journal of Robotics Research
39(12): 1367–1376. DOI: 10.1177/0278364920961451.

Ajoudani A, Zanchettin AM, Ivaldi S, et al. (2018) Progress and
prospects of the human–robot collaboration. Autonomous
Robots 42(5): 957–975.

Ambrosin M, Conti M, Ibrahim A, et al. (2016) Sana: secure and
scalable aggregate network attestation Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security. New York, NY: Association for
Computing Machinery, 731–742.

Ashkenazi Y, Dolev S, Kamei S, et al. (2023) Forgive and
forget: self-stabilizing swarms in spite of byzantine robots.

Concurrency and Computation: Practice and Experience
35(11): e6123.

Asokan N, Brasser F, Ibrahim A, et al. (2015) Seda: scalable
embedded device attestation. Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security. New York, NY: Association for Computing Ma-
chinery, 964–975.

Ayanian N (2019) Dart: diversity-enhanced autonomy in robot
teams. The International Journal of Robotics Research
38(12-13): 1329–1337. DOI: 10.1177/0278364919839137.

Balluchi A, Benvenuti L, Di Benedetto M, et al. (2002) Design of
observers for hybrid systems. Hybrid Systems: Computation
and Control 2289: 76–89.

Behley J, Garbade M, Milioto A, et al. (2021) Towards 3d lidar-
based semantic scene understanding of 3d point cloud se-
quences: the semantickitti dataset. The International Journal
of Robotics Research 40(8-9): 959–967. DOI: 10.1177/
02783649211006735.

Besselink B and Johansson KH (2015) Control of platoons of
heavy-duty vehicles using a delay-based spacing policy.
IFAC-PapersOnLine 48(12): 364–369.

Bicchi A, Fagiolini A, Dini G, et al. (2008) Tolerating, malicious
monitors in detecting misbehaving robots 2008 IEEE Inter-
national Workshop on Safety, Security and Rescue Robotics.
New York, NY: IEEE, 109–114.

Bicchi A, Fagiolini A and Pallottino L (2010) Towards a society of
robots. IEEE Robotics and Automation Magazine 17(4): 26–36.

Bossens DM, Ramchurn S and Tarapore D (2022) Resilient robot
teams: a review integrating decentralised control, change-
detection, and learning. Current Robotics Reports 3(3):
85–95.

Bourne JR, Goodell MN, He X, et al. (2020) Decentralized multi-
agent information-theoretic control for target estimation and
localization: finding gas leaks. The International Journal of
Robotics Research 39(13): 1525–1548. DOI: 10.1177/
0278364920957090.

Bressan A and Piccoli B (2007) Introduction to the Mathematical
Theory of Control. Springfield, MO: American Institute of
Mathematical Sciences, Vol. 1.

Cai P, Luo Y, Hsu D, et al. (2021) Hyp-despot: a hybrid parallel
algorithm for online planning under uncertainty. The Inter-
national Journal of Robotics Research 40(2-3): 558–573.
DOI: 10.1177/0278364920937074.

Caporale D, Settimi A,Massa F, et al. (2019) Towards the design of
robotic drivers for full-scale self-driving racing cars. Pro-
ceedings of International Conference on Robotics and Au-
tomation. New York, NY: IEEE, 5643–5649.

Cassandras CG and Lafortune S (2006) Introduction to Discrete
Event Systems. Secaucus, NJ: Springer-Verlag NewYork, Inc.

Christensen AL, Ogrady R and Dorigo M (2009) From fireflies to
fault-tolerant swarms of robots. IEEE Transactions on
Evolutionary Computation 13(4): 754–766. DOI: 10.1109/
TEVC.2009.2017516.

Cook SA (1971) The complexity of theorem-proving procedures.
Proceedings of the Third Annual ACM Symposium on Theory
of Computing. New York, NY: Association for Computing
Machinery, 151–158.

Fagiolini et al. 2175

https://orcid.org/0000-0001-9943-1975
https://orcid.org/0000-0001-9943-1975
https://orcid.org/0000-0001-8635-5571
https://orcid.org/0000-0001-8635-5571
https://doi.org/10.1177/0278364920961451
https://doi.org/10.1177/0278364919839137
https://doi.org/10.1177/02783649211006735
https://doi.org/10.1177/02783649211006735
https://doi.org/10.1177/0278364920957090
https://doi.org/10.1177/0278364920957090
https://doi.org/10.1177/0278364920937074
https://doi.org/10.1109/TEVC.2009.2017516
https://doi.org/10.1109/TEVC.2009.2017516

Cortes J, Martinez S, Karatas T, et al. (2004) Coverage control for
mobile sensing networks. IEEE Transactions on Robotics and
Automation 20(2): 243–255.

Di Paola D, Gasparri A, Naso D, et al. (2015) Decentralized dynamic
task planning for heterogeneous robotic networks. Autonomous
Robots 38(1): 31–48. DOI: 10.1007/s10514-014-9395-y.

Dong X and Sitti M (2020) Controlling two-dimensional collective
formation and cooperative behavior of magnetic microrobot
swarms. The International Journal of Robotics Research
39(5): 617–638. DOI: 10.1177/0278364920903107.

Doyen L and Rapaport A (2001) Set-valued observers for control
systems. Dynamics and Control 11(3): 283–296.

Duz A, Phillips S, Fagiolini A, et al. (2018) Stealthy attacks in cloud-
connected linear impulsive systems. 2018 Annual American
Control Conference (ACC). New York, NY: IEEE, 146–152.

Eilers S, Mårtensson J, Pettersson H, et al. (2015) Companion–
towards co-operative platoon management of heavy-duty
vehicles. 2015 IEEE 18th International Conference on In-
telligent Transportation Systems. New York, NY: IEEE,
1267–1273.

England P, Lampson B, Manferdelli J, et al. (2003) Cover feature -
a trusted open platform. Computer 36: 55–62.

Fagiolini A and Bicchi A (2013) On the robust synthesis of logical
consensus algorithms for distributed intrusion detection.
Automatica 49(8): 2339–2350.

Fagiolini A, Dubbini N, Martini S, et al. (2015) Convergence
analysis of distributed set-valued information systems. IEEE
Transactions on Automatic Control 61(6): 1477–1491.

Fathian K, Summers TH and Gans NR (2018) Robust distributed
formation control of agents with higher-order dynamics.
IEEE Control Systems Letters 2(3): 495–500.

Ferraro A and Scordamaglia V (2023) A set-based approach for
detecting faults of a remotely controlled robotic vehicle
during a trajectory tracking maneuver. Control Engineering
Practice 139: 105655.

Fourlas G, Kyriakopoulos K and Krikelis N (2002) Diagnosability of
hybrid systems. Proceedings of the IEEE Mediterranean Con-
ference On Control and Automation. New York, NY: IEEE.

Gasparri A, Paola DD, Giua A, et al. (2011) Consensus-based
decentralized supervision of petri nets. 2011 50th IEEE
Conference on Decision and Control and European Control
Conference. New York, NY: IEEE, 1128–1135. DOI: 10.
1109/CDC.2011.6161340.

Goebel R, Sanfelice RG and Teel AR (2009) Hybrid dynamical
systems. IEEE Control Systems 29(2): 28–93.

Greenberg A (2016) The Jeep Hackers are Back to Prove Car
Hacking can Get Much Worse. San Francisco, CA: Wired
Magazine.

Guo P, Kim H, Virani N, et al. (2018) Roboads: anomaly detection
against sensor and actuator misbehaviors in mobile robots.
2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). New York, NY:
IEEE, 574–585.

Gupta V, Langbort C and Murray RM (2006) On the robustness of
distributed algorithms. Proceedings of the 45th IEEE Con-
ference on Decision and Control. New York, NY: IEEE,
3473–3478.

Hoeller A and Toegl R (2018) Trusted platform modules in cyber-
physical systems: on the interference between security and de-
pendability. 2018 IEEE European Symposium on Security and
PrivacyWorkshops (EuroS&PW). NewYork,NY: IEEE, 136–144.

ISO Central Secretary (2009) Information technology - trusted
platformmodule - part 1: overview. Standard ISO/IEC 11889-
1:2009, Intl. Organization for Standardization, Geneva, CH.
https://www.iso.org/standard/50970.html.

ISO Central Secretary (2015) Information technology - trusted
platform module library - part 1: architecture. Standard ISO/
IEC 11889-1:2015, Intl. Organization for Standardization,
Geneva, CH. https://www.iso.org/standard/66510.html.

Jadbabaie A, Lin J and Morse A (2003) Coordination of
groups of mobile autonomous agents using nearest
neighbor rules. IEEE Transactions on Automatic Control
48(6): 988–1001.

Kabir AM, Thakar S, Malhan RK, et al. (2021) Generation of
synchronized configuration space trajectories with workspace
path constraints for an ensemble of robots. The International
Journal of Robotics Research 40(2-3): 651–678. DOI: 10.
1177/0278364920988087.

Kabzan J, Valls MI, Reijgwart VJ, et al. (2020) Amz driverless: the
full autonomous racing system. Journal of Field Robotics
37(7): 1267–1294.

Kaur U, Zhou H, Shen X, et al. (2021) Robomal: malware de-
tection for robot network systems. 2021 Fifth IEEE Inter-
national Conference on Robotic Computing (IRC). New
York, NY: IEEE, 65–72.

Khalastchi E and KalechM (2018) On fault detection and diagnosis in
robotic systems. ACM Computing Surveys 51(1): 1–24.

Khalastchi E and KalechM (2019) Fault detection and diagnosis in
multi-robot systems: a survey. Sensors 19(18): 4019.

Ko WR, Jang M, Lee J, et al. (2021) Air-act2act: human–human
interaction dataset for teaching non-verbal social behaviors to
robots. The International Journal of Robotics Research 40(4-
5): 691–697. DOI: 10.1177/0278364921990671.

Kress-Gazit H, Fainekos GE and Pappas GJ (2009) Temporal-
logic-based reactive mission and motion planning. IEEE
Transactions on Robotics 25(6): 1370–1381.

Kuderer M, Gulati S and Burgard W (2015) Learning driving
styles for autonomous vehicles from demonstration.
Proceedings of the IEEE International Conference on
Robotics and Automation. New York, NY: IEEE,
2641–2646.

Lau H, Bate I, Cairns P, et al. (2011) Adaptive data-driven error
detection in swarm robotics with statistical classifiers. Ro-
botics and Autonomous Systems 59(12): 1021–1035.

Lee S and Hauert S (2023) Building trustworthiness by minimizing
the sim-to-real gap in fault detection for robot swarms.
Proceedings of the First International Symposium on
Trustworthy Autonomous Systems. New York, NY: Associ-
ation for Computing Machinery, 1–3. DOI: 10.1145/
3597512.3597527.

Lefèvre S, Carvalho A and Borrelli F (2015a) A learning-based
framework for velocity control in autonomous driving. IEEE
Transactions on Automation Science and Engineering 13(1):
32–42.

2176 The International Journal of Robotics Research 43(14)

https://doi.org/10.1007/s10514-014-9395-y
https://doi.org/10.1177/0278364920903107
https://doi.org/10.1109/CDC.2011.6161340
https://doi.org/10.1109/CDC.2011.6161340
https://www.iso.org/standard/50970.html
https://www.iso.org/standard/66510.html
https://doi.org/10.1177/0278364920988087
https://doi.org/10.1177/0278364920988087
https://doi.org/10.1177/0278364921990671
https://doi.org/10.1145/3597512.3597527
https://doi.org/10.1145/3597512.3597527

Lefèvre S, Carvalho A, Gao Y, et al. (2015b) Driver models for
personalised driving assistance. Vehicle System Dynamics
53(12): 1705–1720.

Li X and Parker LE (2007) Sensor analysis for fault detection in
tightly-coupled multi-robot team tasks. Proceedings 2007
IEEE International Conference on Robotics and Automation.
New York, NY: IEEE, 3269–3276. DOI: 10.1109/ROBOT.
2007.363977.

Lin H, Zhai G and Antsaklis PJ (2003) Set-valued observer design
for a class of uncertain linear systems with persistent dis-
turbance and measurement noise. International Journal of
Control 76(16): 1644–1653.

Mavrogiannis C and Knepper RA (2021) Hamiltonian coordina-
tion primitives for decentralized multiagent navigation. The
International Journal of Robotics Research 40(10-11):
1234–1254. DOI: 10.1177/02783649211037731.

Millérioux G and Daafouz J (2007) Invertibility and flatness of
switched linear discrete-time systems. In: A Bemporad, A
Bicchi and G Buttazzo (eds) Hybrid Systems: Computation
and Control. Berlin: Springer, 714–717.

Monteriu A, Asthan P, Valavanis K, et al. (2007) Model-based
sensor fault detection and isolation system for unmanned
ground vehicles: theoretical aspects (part I). Proceedings
2007 IEEE International Conference on Robotics and Au-
tomation. New York, NY: IEEE, 2736–2743.

Morbidi F, Colaneri P and Stanger T (2013) Decentralized optimal
control of a car platoon with guaranteed string stability. 2013
European Control Conference (ECC). New York, NY: IEEE,
3494–3499.

Nguyen TW, Catoire L and Garone E (2019) Control of a quadrotor
and a ground vehicle manipulating an object. Automatica
105: 384–390.

Olfati-Saber R, Fax JA and Murray RM (2007) Consensus and
cooperation in networked multi-agent systems. Proceedings
of the IEEE 95(1): 215–233.

Özveren C and Willsky A (1992) Invertibility of discrete-event
dynamic systems. Mathematics of Control, Signals, and
Systems 5(4): 365–390.

Pallottino L, Scordio VG, Bicchi A, et al. (2007) Decentralized
cooperative policy for conflict resolution in multivehicle
systems. IEEE Transactions on Robotics 23(6): 1170–1183.

Parker L (1998) Alliance: an architecture for fault tolerant mul-
tirobot cooperation. IEEE Transactions on Robotics and
Automation 14(2): 220–240. DOI: 10.1109/70.681242.

Pasqualetti F, Bicchi A and Bullo F (2012) Consensus computation
in unreliable networks: a system theoretic approach. IEEE
Transactions on Automatic Control 57(1): 90–104. DOI: 10.
1109/TAC.2011.2158130.

Pasqualetti F, Dörfler F and Bullo F (2013) Attack detection and
identification in cyber-physical systems. IEEE Transactions
on Automatic Control 58(11): 2715–2729.

Pedone S and Fagiolini A (2020) Racecar longitudinal con-
trol in unknown and highly-varying driving conditions.
IEEE Transactions on Vehicular Technology 69(11):
12521–12535.

Petri R, Springer M, Zelle D, et al., 2016, November. Evaluation of
lightweight TPMs for automotive software updates over the

air. In Proc. of 4th International Conference on Embedded
Security in Car USA (pp. 1-15).

Pettersson O (2005) Execution monitoring in robotics: a survey.
Robotics and Autonomous Systems 53(2): 73–88.

Pfleeger CP, Pfleeger SL and Margulies J (2015) Security in
Computing. Saddle River, NJ: Prentice Hall.

Pitropov M, Garcia DE, Rebello J, et al. (2021) Canadian adverse
driving conditions dataset. The International Journal of
Robotics Research 40(4-5): 681–690. DOI: 10.1177/
0278364920979368.

Platzer A (2010) Logical Analysis of Hybrid Systems: Proving
Theorems for Complex Dynamics. Berlin: Springer Science &
Business Media.

Radwan N, Burgard W and Valada A (2020) Multimodal
interaction-aware motion prediction for autonomous
street crossing. The International Journal of Robotics
Research 39(13): 1567–1598. DOI: 10.1177/
0278364920961809.

Ramadge P and Wonham W (1987) Supervisory control of a class
of discrete event processes. SIAM Journal on Control and
Optimization 25(1): 206–230.

Ramadge P and Wonham W (1989) The control of discrete event
systems. Proceedings of the IEEE 77(1): 81–98.

Raya M, Papadimitratos P and Hubaux JP (2006) Securing ve-
hicular communications. IEEE Wireless Communications
13(5): 8–15.

Rungger M, Mazo JM and Tabuada P (2013) Specification-
guided controller synthesis for linear systems and safe
linear-time temporal logic. Proceedings of the 16th
Conference on Hybrid Systems: Computation and Con-
trol. New York, NY: Association for Computing Ma-
chinery, 333–342.

Sain M and Massey J (2002) Invertibility of linear time-invariant
dynamical systems. IEEE Transactions on Automatic Control
14(2): 141–149.

Schneider R, Kohn A, Klimke M, et al. (2017) Cyber security in
the automotive domain – an overview. In: WCXTM 17: SAE
World Congress Experience. Pittsburgh, PA, SAE Interna-
tional, 1–10. DOI: 10.4271/2017-01-1652.

Serlin Z, Yang G, Sookraj B, et al. (2020) Distributed and con-
sistent multi-image feature matching via quickmatch. The
International Journal of Robotics Research 39(10-11):
1222–1238. DOI: 10.1177/0278364920917465.

Shamma JS and Tu KY (1999) Set-valued observers and optimal
disturbance rejection. IEEE Transactions on Automatic
Control 44(2): 253–264.

ShohamYand TennenholtzM (1995) On social laws for artificial agent
societies: off-line design. Artificial Intelligence 73(1-2): 231–252.

Sinopoli B, Sharp C, Schenato L, et al. (2003) Distributed control
applications within sensor networks. Proceedings of the IEEE
91(8): 1235–1246.

Solyom S and Coelingh E (2013) Performance limitations in
vehicle platoon control. IEEE Intelligent Transportation
Systems Magazine 5(4): 112–120.

Stavrou D, Eliades DG, Panayiotou CG, et al. (2016) Fault de-
tection for service mobile robots using model-based method.
Autonomous Robots 40: 383–394.

Fagiolini et al. 2177

https://doi.org/10.1109/ROBOT.2007.363977
https://doi.org/10.1109/ROBOT.2007.363977
https://doi.org/10.1177/02783649211037731
https://doi.org/10.1109/70.681242
https://doi.org/10.1109/TAC.2011.2158130
https://doi.org/10.1109/TAC.2011.2158130
https://doi.org/10.1177/0278364920979368
https://doi.org/10.1177/0278364920979368
https://doi.org/10.1177/0278364920961809
https://doi.org/10.1177/0278364920961809
https://doi.org/10.4271/2017-01-1652
https://doi.org/10.1177/0278364920917465

Strobel V, Castelló Ferrer E and Dorigo M (2018) Managing
byzantine robots via blockchain technology in a swarm
robotics collective decision making scenario. Proceed-
ings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems. Richland, SC: Interna-
tional Foundation for Autonomous Agents and Multi-
agent Systems, 541–549.

Sumra IA, Hasbullah H, Lail J, et al. (2011) Trust and trusted
computing in vanet. Computer Science Journal 1(1).

Sundaram S and Hadjicostis CN (2008) Partial state observers for
linear systems with unknown inputs. Automatica 44(12):
3126–3132.

Tarapore D, Lima PU, Carneiro J, et al. (2015) To err is robotic, to
tolerate immunological: fault detection in multirobot systems.
Bioinspiration & Biomimetics 10(1): 016014.

Tarapore D, Timmis J and Christensen AL (2019) Fault detection
in a swarm of physical robots based on behavioral outlier
detection. IEEE Transactions on Robotics 35(6): 1516–1522.
DOI: 10.1109/TRO.2019.2929015.

Thrun S (2002) Probabilistic robotics. Communications of the
ACM 45(3): 52–57.

Trinh MT and Nguyen VT (2023) An observer-based distributed
nonlinear model predictive fault-tolerant control for leader-
following formation tracking control. 2023 International
Conference on System Science and Engineering (ICSSE).
New York, NY: IEEE, 134–141.

Trumić M, Grioli G, Jovanović K, et al. (2022) Force/torque-
sensorless joint stiffness estimation in articulated soft robots.
IEEE Robotics and Automation Letters 7(3): 7036–7043.

Vu L and Liberzon D (2008) Invertibility of switched linear
systems. Automatica 44(4): 949–958.

Wedaj S, Paul K and Ribeiro VJ (2019) Dads: decentralized at-
testation for device swarms. ACM Transactions on Privacy
and Security (TOPS) 22(3): 1–29.

Wehbe R and Williams RK (2021a) Probabilistic resilience of
dynamic multi-robot systems. IEEE Robotics and Automation
Letters 6(2): 1777–1784. DOI: 10.1109/LRA.2021.3060378.

Wehbe R and Williams RK (2021b) Probabilistic security for
multirobot systems. IEEE Transactions on Robotics 37(1):
146–165. DOI: 10.1109/TRO.2020.3014024.

Xu F, Puig V, Ocampo-Martinez C, et al. (2017) Set-valued observer-
based active fault-tolerant model predictive control. Optimal
Control Applications and Methods 38(5): 683–708.

Yoo T and Lafortune S (2002) Polynomial-time verification of
diagnosability of partially observed discrete-event sys-
tems. IEEE Transactions on Automatic Control 47(9):
1491–1495.

Zad S, Kwong R and Wonham W (2003) Fault diagnosis in
discrete-event systems: framework and model reduction.
IEEE Transactions on Automatic Control 48(7): 1199–1212.

Zattoni E, Perdon AM and Conte G (2017) Output regulation by
error dynamic feedback in hybrid systems with periodic state
jumps. Automatica 81: 322–334. DOI: 10.1016/j.automatica.
2017.03.037. https://www.sciencedirect.com/science/article/
pii/S0005109817301681.

Zeng X (2015) Hybrid networked control for cyber-physical
network systems with applications to interconnected

power grids. PhD Thesis, Texas Tech University, Lub-
bock, TX.

Zeng W and Chow MY (2014) Resilient distributed control in the
presence of misbehaving agents in networked control sys-
tems. IEEE Transactions on Cybernetics 44(11): 2038–2049.
DOI: 10.1109/TCYB.2014.2301434.

Zheng B, Deng P, Anguluri R, et al. (2016) Cross-layer codesign
for secure cyber-physical systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
35(5): 699–711. DOI: 10.1109/TCAD.2016.2523937.

Zhou L and Tokekar P (2021) Multi-robot coordination and
planning in uncertain and adversarial environments. Current
Robotics Reports 2: 147–157.

Zhuo-Hua D, Zi-xing C and Jin-xia Y (2005) Fault diagnosis and
fault tolerant control for wheeled mobile robots under un-
known environments: a survey. Proceedings of the 2005 IEEE
International Conference on Robotics and Automation. New
York, NY: IEEE, 3428–3433.

Appendix

A Index to multimedia extensions

B Event estimation with incomplete
time-varying visibility

This section demonstrates the expression of the detector
map in (7) given in Th. 1. Together with the nondeter-
ministic automaton Δi presented in Section 4, this result
extends existing solutions (Cassandras and Lafortune,
2006) insofar as they show how, given a discrete event-
based model, a discrete-state monitor can be efficiently
obtained even for partial and time-varying visibility of
events.

Towards this goal, given a topology check vh along with
the jth and mth components, bsi, j and bsi,m, of the known
encoder map bsi, the following three propositions:

Proposition 1. Events activating on a single component
of si. The smallest upper approximation of a detector
condition c = si,j is bc ¼ bsi, j vh, j Å ¬vh, j.
Proof. The jth component si,j of the encoder map is

expanded, based on the visibility region Vh, as

si, j qi, Iið Þ ¼ bsi, j qi, I hi	

Å
	
Åql2Ii∖Vh1ηi, j qið Þ qlð Þ

¼

¼ bsi, j qi, I hi	

Å pi, j qi, Iið Þ,

Table 6. Index to multimedia extensions.

Exten.
Media
type Description

#1 Video Experiments of misbehavior detection in self-
driving warehouse forklifts

2178 The International Journal of Robotics Research 43(14)

https://doi.org/10.1109/TRO.2019.2929015
https://doi.org/10.1109/LRA.2021.3060378
https://doi.org/10.1109/TRO.2020.3014024
https://doi.org/10.1016/j.automatica.2017.03.037
https://doi.org/10.1016/j.automatica.2017.03.037
https://www.sciencedirect.com/science/article/pii/S0005109817301681
https://www.sciencedirect.com/science/article/pii/S0005109817301681
https://doi.org/10.1109/TCYB.2014.2301434
https://doi.org/10.1109/TCAD.2016.2523937

which is conveniently factorized as follows. If pi,j = 0, the
detector condition reduces to c ¼ bsi, j, whereas if pi, j ¼ 1, it
becomes c ¼ bsi, j Å 1 ¼ 1. This leads to the factorization
c ¼ bsi, j ¬pi, j Å 1 pi, j. Now, if the kth topology is entirely
visible by the monitor (vi,j = 1), it holds pi,j = 0 since Ii \ Vh =
∅, which implies c ¼ bsi, j, whereas nothing can be said on
the value of pi,j if vi,j = 0. Then, using the topology check
vh,j, c is factorized as c ¼ bsi, j vi, j Å bsi, j¬pi, j Å pi, j

	

¬vi, j. Its

smallest visibility-based upper approximation is thenbc ¼ maxpi, j2B c ¼ bsi, jvi, j Å A¬vi, j, with A ¼ maxpi, j2B
ðbsi, j¬pi, j Å pi, jÞ ¼ maxfbsi, j, 1g ¼ 1, which proves the thesis.

Proposition 2. Events activating on a single negated
component of si. The smallest upper approximation of a
detector condition c = ¬si,lis bc ¼ ¬bsi, j.
Proof. Analogously to Prop. 1, the detector condition c is

expanded using the visibility region Vh as follows:

¬si, j qi, Iið Þ ¼ ¬ bsi, j qi, Ihi	

Å pi, j qi, Iið Þ

	

¼

¼ ¬bsi, j qi, Ihi	

¬pi, j qi, Iið Þ,

where De Morgan’s law has been used. If pi,j = 0, the
detector condition reduces to c ¼ ¬bsi, j, whereas if pi,j = 1, it
becomes c = 0. Then, c is factorized as
c ¼ ¬bsi, j ¬pi, j Å 0 pi, j ¼ ¬bsi, j¬pi, j. Now, if vi,j = 1, pi,j = 0
that implies c ¼ ¬bsi, j, whereas nothing can be said on its
value otherwise. Therefore, c is factorized using the to-
pology check as c ¼ ¬bsi, j vi, j Å ¬bsi, j ¬pi, j ¬vi, j. Its
visibility-based smallest upper approximation is then

bc ¼ ¬bsi, jvi, jÅ¬bsi, j maxpi, j2B
	
pi, j

¬vi, j ¼

¼ ¬bsi, jvi, jÅ¬bsi, j ¬vi, j ¼
¼ ¬bsi, j vi, jÅ¬vi, j

	

¼ ¬bsi, j,

which gives the thesis.
Proposition 3. Events activating on the jth and the
negated mth components of si. The smallest upper ap-
proximation of a detector condition c = si,j¬si,m isbc ¼ ðbsi, jvh, jÅ¬vh, jÞ¬bsi,m.
Proof. Based on the hth visibility region Vh, the detector

condition is written as

c ¼ bsi, jÅpi, j
	

¬bsi,m ¬pi,mð Þ ¼
¼ bsi, j¬bsi,m¬pi,mÅpi, j¬bsi,m¬pi,m:

Enumerating all combinations of pi,j and pi,m, c is factorized
as c ¼ ¬bsi,mð Þ pi, j ¬pi,mÅ bsi, j ¬bsi,m	

¬ pi, j¬pi,m. More-
over, based on the topology check (recall that vi,j = 1 implies
pi,j = 0, and vi,m = 1 implies pi,m = 0), the expression is
further factorized as

c ¼ Avi, jvi,mÅBvi, j¬vi,mÅ
ÅC¬vi, jvi,mÅD¬vi, j¬vi,m,

with A ¼ bsi, j¬bsi,m, B ¼ bsi, j¬bsi,m¬pi,m, C ¼ ¬bsi,mpi, jÅðbsi, j¬bsi,mÞ¬pi, j, D ¼ ¬bsi,m pi, j ¬pi,m Å bsi, j ¬bsi,m ¬pi, j ¬pi,m. Its
visibility-based smallest upper approximation is then

bc ¼ bsi, j¬bsi,m vi, jvi,mÅvi, j¬vi,m
	

Å
Å¬bsi,m ¬vi, jvi,mÅ¬vi, j¬vi,m

	

¼

¼ bsi, j¬bsi,mvi, jÅ¬bsi,m¬vi, j,
which immediately gives the thesis.

Furthermore, the above results are now helpful to prove
Theorem 1. This is obtained as follows:

Proof. (of Theorem 1) The general case of a map ei in (2)
involves general encoder index sets γi, j, γ*i, j. One has to
prove that the previous propositions hold even when these
sets are not singletons, which can be obtained by induction
on the number of their elements.

To begin with, suppose that γi,j = {1, …, l}. The case
with l = 1 is proved by Prop. 1. Assume now the thesis
holds for l = m, i.e., that the smallest upper approximation
of c ¼ Äl2γi, jsi,l¼ Äm

l¼1si,l is bc ¼ Äm
l¼1 bsi, j vi,lÅ¬vi,l

	

.

The inductive step requires proving the thesis for l = m +
1. Defining z ¼ Äm

l¼1si,l, the detector condition

c ¼ Ämþ1
l¼1 si,l is written as z si,mþ1 ¼ z bsi,mþ1Åpi,mþ1ð Þ,

that is factorized further as follows. If pi,m+1 = 0, the
detector condition reduces to c ¼ z bsi,mþ1, while if
pi,m+1 = 1, it becomes c = z, thus giving the expression
c ¼ z bsi,mþ1 ¬pi,mþ1Åz pi,mþ1. The detector condition is
factorized using the topology check vi,m+1 as follows. If
vi,m+1 = 1, it holds pi,m+1 = 0 and c ¼ z bsi,mþ1, while if
vi,m+1 = 0 nothing can be said on its value. This yields to
c = z A vi,m+1 Å z B ¬vi,m+1, with A ¼ bsi,mþ1, and
B ¼ bsi,mþ1 ¬ pi,mþ1Åpi,mþ1. The smallest visibility-based
upper approximation is then

bc ¼ maxpi, 1,…, pi,mþ12B c ¼
¼ maxpi, 1,…, pi,m z
	

�
� maxpi,mþ1 Avi,mþ1 þ B¬vi,mþ1ð Þ
	

¼
¼ Äm

l¼1bsi, jvi,lÅ ¬vi,l
	
 bsi,mþ1vi,mþ1 Å ¬vi,mþ1ð Þ,

which proves the thesis in the first considered case.
Now suppose that γ*

i, j
¼ f1,…, lg and proceed, as above,

by induction. The case with l = 1 is proven in Prop. 2.
Assume now that the thesis holds for l = m, i.e., that the

smallest upper approximation of c ¼ Äl2γ*
i, j

¬si,l¼Äm
l¼1¬si,l

is bc ¼ Äm
l¼1¬bsi, j. One has to prove it for l = m + 1. The

detector condition

c ¼ Ämþ1
l¼1 ¬si,l¼ z ¬bsi,mþ1 ¬pi,mþ1

is factorized as follows. If pi,m+1 = 0, the expression reduces
to c ¼ z ¬bsi,mþ1, while, if pi,m+1 = 1, it becomes c = 0; this
leads to c ¼ z ¬bsi,mþ1 ¬pi,mþ1. Moreover, the detector
condition is factorized further using the topology check
vi,m+1. In this respect, if vi,m+1 = 1, it holds pi,m+1 = 0 and
c ¼ z ¬bsi,mþ1, while if vi,m+1 = 0 nothing can be said on its
value. This yields

c ¼ z ¬bsi,mþ1vi,mþ1Åz¬bsi,mþ1 ¬pi,mþ1 ¬vi,mþ1 ¼
¼ z ¬bsi,mþ1 vi,mþ1Å¬pi,mþ1 ¬vi,mþ1ð Þ:

Fagiolini et al. 2179

The smallest visibility-based upper approximation is thenbc ¼ ðÄm
l¼1¬si,lÞð¬bsi,mþ1CÞ, with

C ¼ maxpi,mþ1 vi,mþ1Å¬pi,mþ1¬vi,mþ1ð Þ ¼
¼ max vi,mþ1, 1f g ¼ 1,

which proves the thesis in this second case.
Finally, the cases with γi, j, γ

*
i, j ≠∅ and of cardinality

greater than one are proven by a recursive application of
Prop. 3, which gives the thesis in the general setting.

C Proof of set-valued consensus

The relevance of a result such as the one in Theorem 2
stems from the number and type of applications, rang-
ing from the convergence analysis of iterative consen-
sus protocols on constrained lattices (Gasparri et al., 2011),
to network synchronisation (Di Paola et al., 2015), and to
the distributed estimation of maps (Fagiolini et al., 2015).
This section focuses on proving the convergence of the
consensus protocol involved in the theorem to the global
centralized estimate. This is achieved as follows:

Proof of Theorem 2. Prove first that the state of the hth
node after κ steps is

Xh κ½ � ¼)l2wh κð Þ Xl0½ �, (21)

meaning that it is the output of merging all initial values of
its κ-hop c-neighbors together. One can proceed by in-
duction on the consensus step κ. It is immediate to verify
that the property is true for κ = 1 since it holds
Xh 1½ � ¼)l2wh 1ð Þ Xl0½ �. Now, assuming the property is true
after κ steps, it is required to prove it after the κ + 1 steps.
Based on the consensus iteration map in (19), it holds

Xh κ þ 1½ � ¼)l2wh 1ð Þ Jlκ½ �, (22)

where Jl½κ� is the current state of thelth 1-hop c-neighbor of h;
this value is Jlκ½ � ¼) j2wl κð Þ Xj 0½ � by the inductive hypothesis.
Note that the order by which every state value is processed is
irrelevant because of the associativity and commutativity of).
Note also that the occurrence of identical estimates can be
simplified by its idempotency. Now, observe that (22) involves
the consensus states of all nodes j that are κ-hop c-neighbors of
any 1-hop c-neighbor of h, that is all j 2 wl(κ) wherel2 wh (1),
whose union is, by definition, the [κ + 1]-hop c-neighbors of h,
i.e., all j2whðκ þ 1Þ. Hence, (22) is rewritten as
Xh κ þ 1½ � ¼)l2wh κþ1ð Þ Xl0½ �, which proves (21).

Finally note that for κ ≥ κ ¼ diag Gið Þ, the multi-hop
c-neighbors are the whole graph, since Gi is connected,
and hence it holds whðκÞ ¼ W i. Accordingly, for all con-
sensus step κ ≤ κ, it holds

Xh κ½ � ¼)l2whðκÞ Xl0½ � ¼)l2whðκÞ η
l
i ¼ ηi:

Since the above convergence occurs for all nodes h2W i,
the collective consensus state (X1, …, Xm) converges to
1m ηi, which concludes the proof.

D Software guidelines

The simulator and code for the automatic generation of
distributed monitors are available at https://github.com/
federicomassa/IDS. The following are general guidelines
for the specification of a protocol P. The model com-
ponents of all agents must be described in a set of files in
the INPUT folder. The starting point of the protocol
specification is a JSON file, located in the INPUT/
Simulator folder, containing one object with at least
the elements listed below:

1 {
2 “dynamic_models”: [...],
3 “control_models”: [...],
4 “sensors”: [...],
5 “agents”: [...],
6 ...
7 }

where dots indicate further information that is omitted here
or described below. The dynamic_models item is an array of
objects, each of which describes a specific dynamic model
fi. The generic format of each fi item is exemplified below
for the highway example:

1 {
2 “name”: “Unicycle”,
3 “state_variables”: [“x”, “y”, “theta”, “v”],
4 “control_variables”: [“a”, “omega”],
5 “dynamics”: “UnicycleKinematics”,
6 ...
7 }

where, again, dots are used to indicate terms that are omitted
here for the sake of space. The “dynamics” item indicates
the file, located in the INPUT/Dynamics folder, where the
dynamics map of Ai is described.

The control_models item is an array of objects that
represent pairs of automaton δi and decoder map ui. Re-
ferring again to the motorway example, the generic format is
as follows:

1 {
2 “name”: “LeftHandDrivingRules”,
3 “maneuvers”: [“FAST”, “SLOW”, “LEFT”, “RIGHT”],
4 “automaton”: “CarAutomaton”,
5 “control_variables”: [“a”, “omega”],
6 “decoder”: “AccOmegaControl”
7 }

where the “automaton” and “decoder” indicate the files, lo-
cated in the INPUT/Automata and INPUT/Decoders folders,
respectively, where the automaton and the decoders are de-
scribed. By using the elements defined above, agents are then
described as an array of objects, each of which has the format
as in the following extract:

2180 The International Journal of Robotics Research 43(14)

https://github.com/federicomassa/IDS
https://github.com/federicomassa/IDS

1 {
2 “id”: “0”,
3 “init_states”: {“x”:0, “y”:1.5, “theta”:0.5, “v”:20},
4 “init_maneuver”: “FAST”,
5 “dynamic_model”: “Unicycle”,
6 “control_model”: “LeftHandDrivingRules”,
7 “sensors”: [“ExternalCamera”, “SelfSensor”],
8 “consensus”: “ON”,
9 “length”: “4.47”,
10 “desiredV”: “20”,
11 “parameters”: [“length”, “desiredV”]
12 “image”: “Vehicles/Acura_NSX_red.png”.
13 }

where “sensors” is an object that consists of an array of
simulated devices measuring the ith continuous state as well
as those of all neighboring vehicles according to the visi-
bility map V

i

. This is declared as:

1 {
2 “sensors”:
3 [
4 {“name”: “Camera”, “type”: “external”},
5 {“name”: “IntSensor”, “type”: “internal”}
6]
7 }

The example of a 360° external camera acting as a visibility
map Vi can be found in the INPUT/Sensors folder. Further
instructions for the automatic generation and compilation of
the distributed monitor can be found on the GitHub site.

E Key symbols

This section summarizes the key symbols used to describe
the main object of the work: Table 7 reports the ones used to
describe socially organized robots, while Tables 8 and 9 those
involved in the local monitor and consensus node.

Table 7. Key symbols used to describe socially organized robots.

Sym. Name/Description

Q environment/state-space shared by all robots
n number of robotic agents in the system
Ai ith robot or agent/a generic robotic agent
P ith cooperation protocol/octuple of components specifying the behavior of a robot Ai and its interactions with neighbors
qi ith continuous state/vector describing the continuous state of Ai

σi ith discrete state/scalar representing the discrete state of Ai, that is the action or maneuver that the robot is performing
Ti ith topology set/set of topologies characterizing all regions around Ai that are relevant for the protocol Pi

ηi,j (i,j)th mobile topology/a region nearby Ai where the presence or absence of other robots, named Ai-neighbors, affects the
behavior of Ai

η*
i, j

(i,j)th constant topology/constant region used to delimit the environment or represent obstacles

N i ith proximity space or neighborhood/region around Ai that comprises all mobile topologies of Ai

Ni ith neighbor set/set of neighboring agents, Ai-neighbors, that lay within the ith neighborhood N i

Ii ith input set/set of configurations of all Ai-neighbors
ni number of Ai-neighbors
Vi ith visibility map/map describing the region where the sensors of Ai can measure the continuous states of other agents
si ith encoder map/map encoding the presence/absence of Ai-neighbors in every topology
si,j (i, j)th encoder component/component of the encoder map si associated with the (i,j)th topology
Ei ith event alphabet/finite set of events that trigger the update of the current ith discrete state
ei,j (i, j)th event/specific event relevant for protocol Pi

Γi ith encoder index set/set of indices describing which and how the components of the encoder map determine the detection of events
γi,j, γ*i, j encoder index sets/set of indices describing which encoder components si,j are used to detect the occurrence of e

i,j, with positive
or negated values

Σi ith discrete state set/finite set of discrete states for the automaton of Ai

δi ith automaton map/deterministic automaton mapping discrete states and detected events to the next discrete states
ui ith decoder map/map determining control actions based on current continuous and discrete states and the input set
fi ith dynamics map/map describing the instantaneous motion direction of the continuous state qi
t continuous time
k discrete time/discrete index at which an event is recognized by the ith detector map
U i ith control action set/set of permissible control actions for Ai

Hi ith hybrid dynamic map/map describing how the complete state of Ai is dynamically updated
fHi

solution/explicit solution of the cooperative model describing the behavior of Ai

Fagiolini et al. 2181

Table 8. Key symbols involved in the local monitor.

Sym. Name/Description

Mh hth monitor/monitoring process onboard a generic agentAh

that tries to learn whether or not the behavior of Ai is
cooperative

ϵ mismatch tolerance/tunable parameter describing the
maximum tolerance when comparing two behaviors

Ihi ith known input set/subset of Ii that is known to Mh

vi ith topology check/map describing in which topologies the
hth monitor Mh has full or partial visibilitybsi ith known encoder/map providing an a priori lower estimate
of si

Δi ith nondeterministic automaton/map describing the set of
possible next discrete states based on the current set of
discrete state and detected eventsbIhi extended input set map/set of predicted input sets that
include Ihi and continuous states in the non-visible
portion of the ith neighborhood N i∖Vh

Li ith forward link table/table of triples used to “invert” the
hybrid model Hi

)ϵ similarity check/map comparing measured and predicted
behaviors and returning the ones that are ϵ-similar

shi ith refined encoder map/map computing the a-posteriori
largest estimate of si

V h
i ith refined visibility/map computing the a-posteriori

visibility over each topology

ηhi ith occupancy estimator map/a-posteriori estimates of the
occupancy of each (i,j)th topology, and also the first main
output of monitor Mh

Ci ith classifier/map classifying the behavior ofAi as certainly
cooperative, possibly-cooperative, or uncooperative, and
also the second main output of monitor Mh

Table 9. Key symbols involved in the consensus node.

Sym. Name/Description

m total number of local monitors
κ consensus step/current index of the consensus step
χ consensus tolerance/tunable parameters describing the

maximum tolerance between the values estimated by
difference monitors

Lift lifting operator/map used to enlarge/lift each value
estimated by a local monitor by a quantity χ

) consensus operator/binary map merging two occupancy
estimates

Ihi, j known input set available forMh and restricted to the (i,j)th
topology

Wh
i, j known portion of the (i,j)th topology

W
h
i, j

non-visible portion of the (i,j)th topology where monitor
Mh has inferred the existence or absence of
Ai-neighbors

sj binary flag indicating if the region W
h
i, j must contain or not

Ai-neighbors
Gi ith communication graph/graph describing the current

topology of communication among all consensus nodes
trying to reach a socially agreed decision on Ai

ηi global estimate of the occupancy
X consensus collective state/vector state including all

consensus nodes state
Xh state of the hth consensus node
κ consensus convergence time, i.e., maximum number of

consensus steps before all nodes agree on the value ηi
wh(p) p-hop c-neighbors/set of nodes that are within p hops from

the hth monitor/nodes

2182 The International Journal of Robotics Research 43(14)

	Distributed misbehavior monitors for socially organized autonomous systems
	1. Introduction
	2. Related work and novelty
	2.1. State of the art
	2.2. Contribution
	2.3. Nomenclature

	3. Protocols for socially organized agents
	3.1. Explanation and intuitive introduction
	3.2. Formal definition
	3.3 Temporal behavior of a cooperative Ai

	4. Protocols for the design of local monitors
	4.1. Brief introduction of the local monitor
	4.2. Technical explanation of the local monitor
	4.3. Formal derivation of the local monitor
	4.4. Algorithmic description of the local monitor

	5. Set-valued consensus protocols for socially-agreed classification
	5.1. Design requirements for the consensus
	5.2. Technical explanation of consensus nodes
	5.3. Algorithmic description of consensus nodes

	6. Autonomous forklifts in a warehouse
	6.1. Cooperation protocol and local monitor explicit derivation
	6.2. Performance evaluation
	6.3. Experiments on a real industrial plant

	7. Other applications of the method
	7.1. The motorway case-study
	7.2. The power grids case-study

	8. Conclusion and discussion
	8.1. Complexity and scalability analysis
	8.1.1. Local monitor
	8.1.2. Consensus node

	8.2. Other relevant observations

	Declaration of conflicting interests
	Funding
	ORCID iDs
	Supplemental Material
	References
	Appendix
	A Index to multimedia extensions
	B Event estimation with incomplete time-varying visibility
	C Proof of set-valued consensus
	D Software guidelines
	E Key symbols

